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ABSTRACT: Digital trees, such as tries, and Patricia tries are data structures routinely used
in a variety of computer and communication applications including dynamic hashing, par-
tial match retrieval, searching and sorting, conflict resolution algorithms for communication
broadcast, data compression, and so forth. Here, we consider tries and Patricia tries built from
n words emitted by a probabilistic dynamical source. Such sources encompass classical and
many models such as memoryless sources and finite Markov chains. The probabilistic behav-
ior of its main parameters, namely, the size and the path length, appears to be determined by
some intrinsic characteristics of the source, such as Shannon entropy and entropy-like con-
stants, that depend on the spectral properties of specific transfer operators of Ruelle type.
© 2001 John Wiley & Sons, Inc. Random Struct. Alg., 19, 289–315, 2001
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1. INTRODUCTION

Tries are an abstract data structure that can be superimposed on a set of words.
As an abstract structure, tries are split according to the symbols encountered in
words. Consider a fixed alphabet � = �a1� � � � � ar� and let X ⊂ �∞ be a finite set
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of infinite words over �. The trie associated with X is then defined recursively by
the rule

Tr �X� = �Tr �T 	a1
X�� � � � �Tr �T 	ar 
X��� where T 	α
X �= �x 
 α · x ∈ X��

In other words, T 	α
X is the set of all words following the symbol α. The recursion
ends when the associated set X contains zero or one element. The advantage of
the trie is that it only maintains the minimal prefix set of symbols that is necessary
to distinguish all the elements of X.
Digital trees are a standard data structure for sorting and searching [5, 7, 15, 19],

data compression [1, 17, 30, 31], and pattern-matching [13]. The need of efficient
storage and transmission of multimedia data [14], and applications to DNA sequenc-
ing [13] emphasizes the importance of such data structures. Patricia tries have been
introduced in 1968 by Morrison [22]. This structure is a variation of tries that elim-
inates the waste of space caused by nodes having only one son. This is done by
collapsing one-way branches into a single node. This structure finds a number of
applications, notably suffix trees. Sedgewick [24] and Knuth [19] describe various
techniques for implementing search and insertion using Patricia tries.
The performance of algorithms that use these structures strongly depends on the

shape of the underlying trees. The number of internal nodes is proportional to the
number of pointers needed to store the data structure, whereas the external path
length is related to the number of comparisons during the creation of the trie. The
shape itself depends on the way words are generated. In information theory context,
the mechanism which produces words is called a source. The two simple models
of sources are memoryless sources, where symbols are emitted independently, and
Markov chains, where the probability of emitting a symbol solely depends on a finite
number of previously generated symbols.
The main parameters of Patricia tries have been already studied for the above

classical sources. The external path length of Patricia tries has been analyzed
by Kirschenhofer, Prodinger, and Szpankowski in [18], Szpankowski in [27], who
obtained the moments of the depth and Rais, Jacquet, and Szpankowski in [25]
proved the convergence in distribution of the depth for tries and Patricia tries
built on memoryless sources. Devroye [4] also has obtained results for the depth
of Patricia tries under a probabilistic model on which the keys are i.i.d. random
variables with a continuous density f on 	0� 1
.
However, data on which tries are built often arise from real sources that may

involve intricate dependencies between symbols. Here, we adopt the model of
dynamical sources introduced by Vallée [28]. This model associates a word M�x� to
a real x of 	0� 1
 and an initial density f on 	0� 1
. The mechanism can be viewed
as a limiting process of consecutive refinements of Markov chains that take into
account a higher-level of dependency on the symbols at each step. Consequently,
it can describe non-Markovian phenomena where the dependency on past history
is unbounded. A high-level of generality is thus obtained by the model. This model
fits the framework of mixing model as described by Szpankowski in [26].
The size and the path length of standard and hybrid tries have been studied exten-

sively in the context of dynamical sources by Clément [2] and Clément, Flajolet,
Vallée [3]. First, we recall their methods and then, we state the new results con-
cerning the size and the path length of Patricia tries. Our probabilistic model is the
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so-called Bernoulli model of size n denoted by ��n�� �: it considers all possible sets
X of a fixed cardinality n consisting of independent source words of infinite length.
We aim to analyze the probabilistic behavior of the size and the path length of a
Patricia trie PaTr�X� when the cardinality n of the set X becomes large.
The analysis of tries mainly involves the prefixes of the words: in a dynamical

source, all source words that start with the same prefix w come from a common
interval of 	0� 1
. The probability of such a measure is denoted by pw. These inter-
vals are called the fundamental intervals and their measure is called the fundamental
probability. In this article, we use Mellin transform and Dirichlet series of fundamen-
tal probabilities

∑
w p

s
w. Our basic mathematical tool is a generalization of Ruelle

transfer operator that is used as a “generating operator” of fundamental probabili-
ties. In previous articles, Vallée [28], Clément [2] and Clément, Flajolet, Vallée [3]
have introduced successive generalizations of the Ruelle operator, mainly based on
a secant (and multisecant) construction, that act on functions of two (or more)
variables. Such operators depend on a complex parameter s and suitably generate
fundamental intervals and simultaneously several fundamental intervals. Finally, the
analysis is performed in a so-called Poisson model but basic depoissonization argu-
ments allow a return to the Bernoulli model. Furthermore, positive properties of
the Ruelle operators (for real values of parameter s) entail the existence of domi-
nant spectral objects, in particular, the existence of the dominant eigenvalue function
λ�s� defined in the neighborhood of the real axis.
The analysis of Patricia tries parameters leads us to also consider conditional

probabilities, and then more complicated Dirichlet series that involve both funda-
mental probabilities and conditional probabilities. We thus use an entire family of
Ruelle operators.
In the Bernoulli model ��n�� � relative to dynamical sources � , the average

values of the size ŜP�n� and the path length L̂P�n� of Patricia tries built over n
words have the following asymptotic behavior 1

ŜP�n� ≈ 1
h�� � 	1 − C1�� �
n� L̂P�n� − 1

h�� �n log n ≈
[
γ − C2�� �
h�� � + C�� � f �

]
n�

Here, h�� � denotes the entropy of the source � , C1�� � and C2�� � are constants
depending solely on the mechanism of the source while C�� � f � is a constant that
depends on both the source and the initial density. These results are to be compared
with those obtained by Clément, Flajolet, and Vallée in [3] for standard tries in the
same model. In the Bernoulli model ��n�� � relative to dynamical sources � , the
average values of the size Ŝ�n� and the path length L̂�n� of standard tries have the
following asymptotic behavior

Ŝ�n� ≈ 1
h�� �n� L̂�n� − 1

h�� �n log n ≈
[
γ

h�� � + C�� � f �
]
n�

Our results exhibit a different asymptotic behavior for Patricia tries and standard
tries. They point out some correcting terms, namely C1 and C2. The constant C1

1 Here, ≈ is used for approximately equal, i.e., up to possible fluctuations induced by nonreal poles. The
omitted periodic function is of mean zero.
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appears in the main term of the asymptotic expansion for the size, while the constant
C2 appears in the second-order term of the asymptotic expansion for the external
path length.
The structure of the article is as follows. Section 2 describes specifications of

tries and Patricia tries and Section 3 presents the basic algebraic analysis of the
additive parameters of tries and Patricia tries. Section 4 introduces the general
model of sources and shows that the generalized Ruelle operators generate the
adequate Dirichlet series. In Section 5, we come back to the average-case analysis,
obtain precise estimates of size and path length, and conclude with examples of
memoryless sources, Markov chains, and the continued fraction source.

2. TRIE STRUCTURES AND MODEL OF ANALYSIS

Here, we describe in more detail the trie structure and its compressed version,
namely the Patricia trie. In particular, these structures can be built recursively. Then,
we present a probabilistic model, namely the Poisson model, that is often used in
the study of the expectation of shape parameters for both the structures.
This is our framework: consider an alphabet � �= �a1� a2� � � � � ar� of cardinality

r (finite or denumerable) and a source � which could be of a quite general type2

and produces infinite words of �∞. Two main operations on infinite words w are
useful: the map σ � �∞ → � that returns the first letter of a word and the shift
function T � �∞ → �∞ that returns the first suffix of a word (i.e., the word stripped
of its first letter). Then, the function T 	a
 is the restriction of T to the set σ−1�a� of
words beginning with symbol a and, for a finite prefix w = a1� � � � � ak, T 	w
 denotes
the composition T 	ak
 ◦ T 	ak−1
 ◦ · · · ◦ T 	a1
.
We deal with the problem of comparing n infinite words independently produced

by the same general. It follows that the probabilities pw that a word begins with a
prefix w will play a central rôle in the analysis.

2.1. Trie Structure

With any finite set X of infinite words produced by the same source, we associate
a trie, Tr�X�, defined by the following recursive rules:

(R0) if X = �, then Tr�X� is the empty tree,
(R1) if X = �x� has a cardinality equal to 1, then Tr�X� consists of a single leaf

node represented by ,
(R2) if X has a cardinality of at least 2, then Tr�X� is an internal node repre-

sented generically by • to which r subtrees are attached,

Tr�X� = �•�Tr�T 	a1
X��Tr�T 	a2
X�� � � � �Tr�T 	ar 
X���

The edge attaching the subtrie Tr�T 	aj
X� is labeled by the symbol aj .

2 We describe precisely the model of source in Section 4.
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Fig. 1. An example of a ternary trie and its associated Patricia trie built on the set
�w1� � � � � w9�.

Such a tree structure underlies the classical radix sorting methods. It can be
built by following recursive rules R0�R1�R2. Its internal nodes are closely linked to
prefixes of words of X. More precisely, each internal node of Tr�X� corresponds to
a prefix w that is obtained by concatenating all the labels of the path from the root
to the node. Since the node is internal, this prefix is shared by at least two words of
X. Figure 1 shows an example of a trie with eight internal nodes that correspond to
the prefixes �ε� a� b� c� ab� bc� abc� bca�. In the sequel, the probability pw that an
infinite source word begins with prefix w thus plays an important role.

2.2. Patricia Trie Structure

Patricia tries eliminate all internal nodes with only one son, i.e., the nodes where
there exist only one distinct symbol in the set σX. With any finite set X of infinite
words produced by the same source, we associate a Patricia trie, PaTr�X�, defined
by the following recursive rules:

�R0� if X = �, then PaTr�X� is the empty tree,
�R1� if X = �x� has a cardinality equal to 1, then PaTr�X� consists of a single

leaf node represented by ,
�R′

2� if X has a cardinality of at least 2, two cases must be considered depending
on the number of distinct symbols contained in the multiset σX that groups
all the first symbols of X:
�R′

2� 1� if σX contains only one symbol, then PaTr�X� equals PaTr�TX�,
�R′

2� 2� otherwise, if σX has at least two distinct symbols, then PaTr�X� is
an internal node represented generically by • to which are attached
r subtrees,

PaTr�X� = �•�PaTr�T 	a1
X��PaTr�T 	a2
X�� � � � �PaTr�T 	ar 
X���
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The edges of the Patricia trie are labeled by words. These words are obtained from
the associated trie by concatenating all the labels of the collapsed edges.
Figure 1 shows an example of a trie and its associated Patricia trie built on

a set of nine words on the alphabet �a� b� c�. The prefixes used in the trie are
�aa� abca� abcb� abcc� bcaa� bcab� ca� cb� cc�. Each prefix corresponds to a leaf.

2.3. Additive Parameters

Let us consider a tree (a standard trie or a Patricia trie). The typical depth of a node
in the tree is the number of edges that connects it to the root. The size of the tree
is the number of its internal nodes. The path length of the tree is the sum of the
typical depths of all (nonempty) external nodes. These parameters are additive in
the sense that they can be evaluated simply by summing over all the internal nodes
with a cost function at the nodes. Then the analysis of such parameters is closely
linked with the recursive definition of the tree.
In the sequel, the size and the path length of the Patricia tries are considered

as parameters of the standard tries with adapted cost functions: the nodes with
one-way branches get a cost of zero in the analysis of Patricia tries.

2.4. Bernoulli and Poisson Models

The purpose of an average-case analysis of data structures is to characterize the
mean value of their parameters under a well-defined probabilistic model that
describes the initial distribution of its inputs. In the present article, we adopt the
following general model: we work with a finite set X of infinite words indepen-
dently produced by the same source � . The cardinality n of the set X is usually
fixed and the probabilistic model is then called the Bernoulli model of size n
relative to the source � and denoted by ��n�� �.
However, rather than fixing the cardinality n of the set X, it proves technically

convenient to assume that the set X has a variable number N of elements that
obeys a Poisson law of parameter z,

Pr�N = k� = e−z z
k

k!
�

In this model, N is narrowly concentrated near its mean z with high probability,
so that the rate z plays a rôle much similar to the size n in the Bernoulli model.
This model is called the Poisson model of rate z relative to the source � and is
denoted by ��z�� �. Later, we will see that it is possible to go back to the Bernoulli
model in which n is fixed by analytic “depoissonization” techniques (see [26]). The
Poisson model is of interest because it implies complete independence of events
involving what infinite words associated with a set of independent prefixes (i.e., a
set that does not contain a word which is the prefix of another word of the set). In
particular, if pw is the probability that a given infinite word begins with prefix w,
then the number of infinite words that begin with the prefix w is itself a Poisson
variable of rate zpw. This strong independence property gives access to the analysis
of our basic parameters.
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3. ALGEBRAIC ANALYSIS OF ADDITIVE PARAMETERS

In the standard trie built on the set X �= �x1� � � � � xn�, the structure of the node
labeled by a prefix w is a finite string fully determined by the prefix w,

σ T 	w
X �= �σ T 	w
x1� � � � � σ T 	w
xn��

where the mapping σ and T are defined in Section 2. This finite string is called a
slice.
In the previous example, the slice that corresponds to the prefix a is �a� b� b� b�; it

is composed of the second letters of the words �aaabc� � � � � abcbc� � � � � abcab� � � � �
abccb� � � ��.
First, the root of the trie is determined by the slice σX and each subtrie is

relative to a shifted set T 	m
X. Now consider an additive parameter γ on X defined
recursively by the rule

γ	X
 = 0 if 
X
 ≤ 1

γ	X
 = δ	σX
 + ∑
m∈�
γ	T 	m
X
 if 
X
 ≥ 2�

The parameter δ is sometimes called the “toll” and is defined on finite strings. The
recurrence relation can be solved, leading to

γ	X
 = ∑
w∈�∗

δ	σ T 	w
X
�

provided that δ�s� is zero on slices s that contain either 0 or 1 symbol.
Our goal is to study the parameters of Patricia tries in the Bernoulli model. This

model leads to intricate and subtle analysis. To simplify it, it is convenient to study
Patricia in the Poisson model which replaces the fixed parameter n by the Poisson
process N (cf. [26]). First, we analyze Patricia in the Poisson model and then recover
the results in the Bernoulli model. The method is called as depoissonization.
We now describe the probabilistic model induced by the Poisson model at each

possible node of the trie determined by a prefix w. Recall the probability that a word
starts with prefix w is the fundamental measure pw. When w is already emitted, the
probability that the next symbol emitted is m equals

p	m
w
 = pw·m
pw

�

Since all the words of X are independently drawn, at the internal node labeled by
w, the symbols of the slice are then emitted by the memoryless source Bw relative
to probabilities �p	m
w
�m∈�.
Moreover, if the cardinality of X is a random Poisson variable of rate z, then the

length of the slice σT 	w
X is also a random Poisson variable of rate zpw. It follows
that the expectation of parameter γ is a sum of expectations of parameter δ,

E	γ��z�� 
 = ∑
w∈�∗

E	δ��zpw� Bw
�
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3.1. Search Costs at Nodes

Here we consider the additive parameters of interest. We define their correspond-
ing tolls and the independence property of the Poisson model gives access to the
evaluation of the toll expectations.

Toll Parameters. First, the toll δS equals 1 provided that the slice σT 	w
X has at
least two symbols. The toll δPS associated with the size of the Patricia trie equals 1
provided that the slice σT 	w
X contains at least two different symbols. One has

δS�s� =
{
1 if 
s
 ≥ 2�
0 otherwise,

δPS�s� =
{
1 if #�s� ≥ 2�
0 otherwise,

where 
s
 and #�s� denote the number of symbols of s and the number of distinct
symbols of s, respectively.
In the same vein, the toll δL for the path length of the trie and the toll δPL for

the path length of the Patricia trie are simply

δL�s� =
{ 
s
 if 
s
 ≥ 2,
0 otherwise,

δPL�s� =
{ 
s
 if #�s� ≥ 2�
0 otherwise.

The following result is the key step of the algebraic part of the treatment of additive
parameters.

Proposition 1. Let B be a memoryless source with probabilities �pi�i∈�. Then, in the
Poisson model ��z� B� of parameter z relative to the source B, the expectations of the
toll parameters are

Size of tries E	δS��z� B
 = 1 − �1 + z�e−z,

Path length of tries E	δL��z� B
 = z�1 − e−z�,

Size of PaTries E	δPS��z� B
 = 1 − e−z − ∑
i∈�

(
e−z�1−pi� − e−z

)
,

Path length of PaTries E	δPL��z� B
 = z
(
1 − ∑

i∈�
pie

−z�1−pi�
)

Proof. We consider an ordered alphabet � = �a1� � � � � ar�. For any set � ⊆ �∗, the
exponential generating function (egf) relative to a parameter δ over � is defined as

Fδ�z� u� x1� � � � � xr� = ∑
s∈�

z
s



s
!u
δ�s�x
s
1

1 · · ·x
s
r
r �

where 
s
 and 
s
i denote the total length of s and the number of occurrences of ai
in s, respectively. Formally, the variables z and u mark the length of the sequence

s
 and the value of the parameter δ, while the variable xi records the occurrences
of the symbol ai.
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When the symbols of � are emitted independently by a memoryless source B
relative to probabilities �pi�, the expectation of δ in the model ��z� B� is

E	δ��z� B
 = e−z ∂
∂u
Fδ�z� u�p1� � � � � pr�
u=1� (1)

Then, the expressions of the parameters are direct consequences of the indepen-
dence property of the Poisson process expressed in the generating function frame-
work. The egfs are defined over the set � = �( consisting of all possible finite
strings. The decomposition

�( = ε+ �+ ∑
k≥2

�k�

that corresponds to the three cases of the recursive definition of tries, once trans-
lated into egfs yields

(for δ = δS� 1 + z�x1 + · · · + xr� + u(ez�x1+···+xr� − 1 − z�x1 + · · · + xr�
)
�

(for δ = δL� 1 + z�x1 + · · · + xr� + ezu�x1+···+xr� − 1 − zu�x1 + · · · + xr��

as egfs relative to the parameters δS and δL of standard tries.
For the Patricia trie parameters, we isolate the case when the slice is of the form

�a� a� � � � � a�. The decomposition is now

�( = ε+ �+ ∑
k≥2

∑
i∈�

�i�k + ∑
k≥2

	�k − ∑
i∈�

�i�k
�

Once translated into egfs, this leads to

(for δ = δPS� 1 + z�x1 + · · · + xr� + ∑
i∈�

�ezxi − 1 − zxi�

+u	ez�x1+···+xr� − 1 − ∑
i∈�

�ezxi − 1�


= 1 + ∑
i∈�

�ezxi − 1� + u
[
ez�x1+···+xr� − 1 − ∑

i∈�
�ezxi − 1�

]
�

(for δ = δPL� 1 + z�x1 + · · · + xr� + ∑
i∈�

�ezxi − 1 − zxi�

+ezu�x1+···+xr� − 1 − ∑
i∈�

�ezuxi − 1�

= ∑
i∈�

�ezxi − 1� + ezu�x1+···+xr� − ∑
i∈�

�ezuxi − 1��

as egfs relative to δPS and δPL. An application of (1) then gives the results.
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3.2. Expectations of Parameters

The expectations of the four parameters can be expressed solely with the funda-
mental measures.

Proposition 2. Let ��z�� � f � be the Poisson model of parameter z relative to the
source � . Then the expectations of the four parameters of interest are

Size of tries S�z� = ∑
w∈�(

	1 − �1 + zpw�e−zpw 
,

Path length of tries L�z� = ∑
w∈�(

zpw	1 − e−zpw 
,

Size of PaTries SP�z�= ∑
w∈�(

[
1−e−zpw −∑

i∈�
�e−zpw�1−p	i
w
�−e−zpw�

]
,

Path length of PaTries LP�z� = ∑
w∈�(

zpw	1 − ∑
i∈�
p	i
w
e

−zpw�1−p	i
w
�
.

Here, p	i
w
 denotes the conditional probability pw·i/pw.
We can now return to the Bernoulli model using the principles of “algebraic

depoissonization” described in detail by Jacquet and Szpankowski [16]. This princi-
ple is mainly based on the equalities

E	Y ��z
 = e−z ∑
n≥0

E	Y ��n

zn

n!
� and thus E	Y ��n
 = n! 	zn
ezE	Y ��z
�

that relate the expectations of the random variable Y under the Poisson and
Bernoulli models.

Proposition 3. Let ��n�� � be the Bernoulli model relative to a probabilistic dynam-
ical source � . Then the expectations of the four parameters of interest are

Size of tries Ŝ�n�= ∑
w∈�(

	1−�1+�n−1�pw��1−pw�n−1
,

Path length of tries L̂�n�= ∑
w∈�(

npw	1−�1−pw�n−1
,

Size of PaTries ŜP�n�= ∑
w∈�(

	1−�1−pw�n

−∑
i∈�

��1−pw�1−p	i
w
��n −�1−pw�n�
,

Path length of PaTries L̂P�n�= ∑
w∈�(

npw

[
1−∑

i∈�
p	i
w


×�1−pw�1−p	i
w
��n−1

]
.
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3.3. Mellin Analysis and Dirichlet Series

In the sequel, the analysis is relative to the Poisson model. Standard depoissoniza-
tion principles enable us to return to the Bernoulli model.
The expressions of average values in the Poisson model belong to the paradigm

of harmonic sums (see [8]) that are general sums of the form

G�x� = ∑
w∈�

λw g�xpw�� for some set �� (2)

For such sums, the Mellin transform is the appropriate tool to achieve asymptotic
analysis when x→ ∞. For a function g defined over 
0�+∞	, the Mellin transform
g∗�s� of g is

g∗�s� =
∫ ∞

0
g�x�xs−1 dx�

provided that the integral converges. The largest open strip �α�β� where the inte-
gral converges is called as fundamental strip. Since the Mellin transform of x �→
λg�µx� is λµ−s times the transform g∗�s� of g, the Mellin transform of G defined
in (2) is

G∗�s� = g∗�s� · 0��−s�� with 0��s� �= ∑
w∈�

λwp
s
w�

There is a general phenomenon which makes the Mellin transform quite useful.
The poles of the Mellin transform are in direct correspondence with the terms in
the asymptotic expansion of the original function at ∞ and 0. For the asymptotic
evaluation of a harmonic sumG�x�, this principle applies provided that the Dirichlet
series 0��s� and the transform g∗�s� are each analytically continuable and are of
proper growth. Then, the asymptotic expansion of G�x� when x → ∞ is closely
related to the sum of residues right to the fundamental strip. For details about the
methodology, we refer to [8].
For parameters of standard tries, the expressions of Proposition 2 show that the

analysis involves the so-called Dirichlet series of prefix probabilities

1�s� �= ∑
w∈�(

psw� (3)

with functions gS�x� = 1− �1+ x�e−x, and gL�x� = x�1− e−x� whose Mellin trans-
forms respectively equal −�s+ 1�2�s� and −2�s+ 1�. The Mellin transforms relative
to the parameters of tries are defined on the fundamental strip �−2�−1� and equal,
respectively

Size of tries S∗�s� = −1�−s��s + 1�2�s�,

Path length of tries L∗�s� = −1�−s�2�s + 1�.

For the parameters of Patricia tries, the analysis deals with Dirichlet series whose
general term involves the expression �pw − pw·i�−s = p−s

w �1 − p	i
w
�−s. More pre-
cisely, the Mellin transforms relative to Patricia parameters are defined on the strip
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�−2�−1� and equal, respectively

Size of PaTries S∗
P�s�=2�s�1S�−s�

with 1S�s�=− ∑
w∈�(

psw− ∑
w∈�(

psw
∑
i∈�

	�1−p	i
w
�s−1
,

Path length of PaTries L∗
P�s�=−2�s+1�	1�−s�+1L�−s�


with 1L�s�= ∑
w∈�(

psw
∑
i∈�
p	i
w
	�1−p	i
w
�s−1−1
.

For the sequel, it proves useful to get alternative expressions of both Dirichlet series
1S�s� and 1L�s�. Using the series expansion of �1− x�u, we obtain two expressions
that involve the family 1	m
�s� for m ≥ 1,

1	m
�s� �= ∑
w∈�∗

psw
∑
i∈�
pm	i
w
� (4)

under the form

1S�s� = �s − 1�1�s� − s ∑
m≥2

�−1�m
m!

(m−1∏
i=2

�s − i�
)

	�s − 1�1	m
�s�
� (5)

1L�s� = − ∑
m≥2

�−1�m
�m− 1�!

(m−1∏
i=2

�s − i�
)

	�s − 1�1	m
�s�
� (6)

Notice that 1	1
�s� coincides with 1�s� defined in (3). The sequel of the analysis
is strongly dependent on the set of prefix probabilities. For standard tries, it is
sufficient to study the set of probabilities pw associated to w ∈ �∗. For Patricia
tries, the set of conditional probabilities p	i
w
 also plays a fundamental role. Here,
we adopt the framework of dynamical sources developed by Vallée in [28] and used
by Clément, Flajolet, and Vallée in [3] in their study of standard tries. In this case,
the prefix probabilities pw are expressed with generating operators of the Ruelle
type. We generalize their method to generate, at the same time, the conditional
probabilities p	i
w
.

4. DYNAMICAL SOURCES

Dynamical sources encompass and generalize the two classical models of sources;
namely, the memoryless sources and the Markovian sources. They are associated
with expanding maps of the interval 	0� 1
. We refer to [28] for more details. We
first recall the definition of such sources and the main properties.

Definition 1. A dynamical source � is defined by four elements:

(a) an alphabet � finite or denumerable,
(b) a topological partition of � �=
0� 1	 with disjoint open intervals �a� a ∈ �,
(c) an encoding mapping σ which is constant and equal to a on each �a,
(d) a shift mapping T whose restriction to �a is a real analytic bijection from �a

to � . Let ha be the local inverse of T restricted to �a and � be the set � �=
�ha� a ∈ ��. There exists a complex neighborhood � of �� on which the set �
satisfies the following:
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(d1) the mappings ha extend to holomorphic maps on � , that map � strictly
inside � (i.e. ha� �� � ⊂ � ),

(d2) the mappings 
h′
a
 extend to holomorphic maps h̃a on � and the supremum

δa �= sup�
h̃a�z�
� z ∈ � � satisfies δa < 1,
(d3) there exists µ < 1 for which the series

∑
a∈� δsa converges on 	�s� > µ,

(d4) there exists a constant K that bounds the ratio 
h′′
a�x�/h′

a�x�
 for all branch
ha and all x ∈ 	0� 1
.

Remarks. The quantity δ �= sup δa satisfies δ < 1 and is called the contraction
ratio. The condition (d4) is often referred as Rényi’s condition and plays an impor-
tant rôle in the study of conditional probabilities. The word M�x� of �∞ emitted
by the source is then formed with the sequence of symbols σT j�x�

M�x� �= �σx� σTx� σT 2x� � � ���

Notice that the functions σ and T that act on real numbers are related to the
functions σ and T that act on words

σM�x� = σx� TM�x� =M�Tx��

The mappings hw �= hm1
◦ hm2

◦ · · · ◦ hmk associated with prefix words w �=
m1 · · ·mk are then the inverse branches of Tk. All the infinite words that begin
with the same prefix w correspond to real numbers x that belong to the same fun-
damental interval �w =
hw�0�� hw�1�	. If the unit interval is endowed with a real
analytic density f that is strictly positive, then the source is called a Probabilistic
Dynamical Source and is denoted by �� � f �. In the sequel, we denote by F the
distribution associated to the initial density f . This distribution is called the ini-
tial distribution. The probability pw that a word begins with prefix w is then the
measure of this interval �w, i.e.,

pw �= 
F�hw�0�� − F�hw�1��
�

The fundamental probabilities relative to the uniform density are denoted by p∗
w

and are called the fundamental canonical probabilities.

4.1. Classical Sources

Here we show that all the classical sources are actually particular instances of
dynamical sources. We explain why dynamical sources can be viewed as a limit-
ing process of Markov chains.

Memoryless Sources. All the memoryless sources can be described inside this
framework with affine branches. If �pa�a∈� is the probability system, then the cor-
responding topological partition is defined by

�a �= 
qa� qa+1	� where qa �= ∑
i<a

pi�

and the restriction of T on �a is the affine mapping with a slope 1/pa on �a.
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Markov Chains. Any Markov chain with a finite alphabet � can be associated to a
dynamical system with branches that are piecewise affine. The partition ��a�a∈� of
� is induced by the initial probabilities of the source (i.e., 
�a
 = pa).
For Markov chains of order 1, each interval �a is divided in r subintervals

��a�b�b∈� of length pa�b = p	b
a
pa. Thus, the subintervals ��a�b�b� a∈� constitute
a topological partition of 	0� 1
. The restriction of the mapping T on �a�b is the
increasing affine branch that maps �a�b on �b with a slope

pb
pab

= pb
p	b
a


· 1
pa
�

More generally, Markov chains of order d are obtained by refining Markov chains
of order d − 1 with a similar method. Each interval �w associated to a prefix w
of length d is divided in r subintervals ��w·b�b∈� that correspond to the probability
of emitting the symbol b after emission of w. The length of the subinterval �w·b is
p	b
w
pw. The restriction of the mapping T on �w·b is the increasing affine branch
that maps �w·b on �Tw·b with a slope

pTw·b
pw·b

= p	b
Tw

p	b
w


· pTw
pw
�

Then, the Markov chains of order d are relative to dynamical sources whose
branches are piecewise affine with rd pieces. Finally, a dynamical source can be
considered as a limiting process of refinement of Markov chains whose order tends
to ∞, provided that these successive Markov chains converge in some sense. In
this limiting process, there exists an unbounded degree of dependence on symbols
and piecewise affine branches become analytic. It is the variation of the derivative
T ′�x� that keeps memory of the previous history.

Continued Fraction. The continued fraction transformation is an example of a
source with unbounded memory. The alphabet is then the set of all positive integers,
the topological partition is defined by �a �= 
1/�a + 1�� 1/a	 and the restriction of
T on �a is the decreasing linear fractional transformation Tx �= �1/x� − a. In other
words,

Tx = 1
x

−
⌊
1
x

⌋
� and σx =

⌊
1
x

⌋
�

The Figure 2 presents three examples of sources represented by their shift function
T , namely, a memoryless source of probabilities � 12 � 16 � 13�, a Markov chain of order 1
on three symbols whose initial probabilities are � 12 � 16 � 13�, and the continued fraction
expansion.

4.2. Generating Operators

We now wish to “generate” prefix probabilities pw and conditional probabilities
p	i
w
 relative to symbol i and prefix w when the source is a dynamical source. The
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Fig. 2.

basic ingredient, well-developed in dynamical system theory, is the classical Ruelle
operator


s	f 
�x� �= ∑
a∈�
h̄a�x�sf ◦ ha�x��

which depends on a parameter s and is defined through the analytic extensions h̄
of 
h′
. When s = 1, 
1	f 
 is a density transformer since if X is a random variable
with density f , then the density of TX is 
1	f 
. The dynamics of the process is
a priori described by s = 1, but many other properties appear to be dependent
upon complex values in the neighborhood of s = 1.
However, the classical Ruelle operator is not directly adapted to produce the

prefix probabilities pw, since it cannot generate at the same time both ends of the
fundamental intervals. In information theory contexts, Vallée [28] has introduced a
new tool, the generalized Ruelle operator, that involves secants of inverse branches

H	h
�x� y� �=
∣∣∣∣h�x� − h�y�

x− y

∣∣∣∣
instead of tangents 
h′�x�
 of inverse branches. Each symbol a produced by source
� is “generated” by a Ruelle operator Gs�	a


Gs�	a
	L
�x� y� �= H̃s	ha
�x� y�L�ha�x�� ha�y���
that involves the analytic extension H̃	ha
 of the secant H	ha
 of the inverse branch
ha. These operators act on functions L of two (complex) variables. A finite word
w �= m1m2 · · ·mk is generated by the composition operator Gs�	w
 �= Gs�	mk
 ◦ · · · ◦
Gs�	m1
. All possible prefixes of length k are then generated by the kth power Gks of
the Ruelle operator Gs relative to source � ,

Gs �= ∑
a∈�

Gs�	a
�

and all possible prefixes of any finite length are generated by the quasi-inverse
�I − Gs�−1 of Gs.
Then, the series 1�s� of prefix probabilities, defined in (3), is expressed by means

of the quasi-inverse of Gs

1�s� = �I − Gs�−1	Qs
�0� 1�� (7)

where Q �= H	F
 is the secant of the initial distribution F .
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Notice that the operators Gs constitute an extension of the classical Ruelle oper-
ator: if ; is the diagonal of L, i.e., ;�u� �= L�u� u�, then the operators Gs and

s satisfy

Gs	L
�u� u� �= 
s	;
�u��

In the context of Patricia tries, we use an operator that generates at the same time
the probability measures for two different depths. Clément in his Ph.D. thesis [2],
and Clément, Flajolet, and Vallée [3] have introduced generalized Ruelle operators
that involve products of secants instead of secants. Here, we adopt this “multisecant
operator”�	m


s to the study of Patricia tries parameters. It involves the “multisecant”
�

	m

s 	h
 of the inverse branches h,

�	m

s 	h
�x� y� z� t� �= H	h
s�x� y�

(
H	h
�z� t�
H	h
�x� y�

)m
=

∣∣∣∣h�x� − h�y�
x− y

∣∣∣∣s−m
∣∣∣∣h�z� − h�t�

z − t

∣∣∣∣m
and acts on functions of four complex variables. It deals with the functional

V 	h
�x� y� z� t� �= �h�x�� h�y�� h�z�� h�t���

The operator �	m

s involves all the inverse branches ha and is defined by

�	m

s 	L
 �= ∑

a∈�
�	m

s 	ha
L ◦ V 	ha
�

Since conditional probabilities (canonical or general) p(	i
w
� p	i
w
 are expressible
with various secants,

p(	i
w
 = p(i
H	hw
�hi�0�� hi�1��

H	hw
�0� 1� �
p	i
w

p(	i
w


= H	F ◦ hw
�hi�0�� hi�1��
H	F ◦ hw
�0� 1� �

the series 1	m
�s� can be expressed by means of the quasi-inverse �I − �
	m

s �−1 of

�
	m

s applied to the multisecant �	m


s 	F
 of the initial distribution F , as follows:

1	m
�s� = ∑
i∈�
p(mi

(
I − �	m


s

)−1[
�	m

s 	F
]�0� 1� hi�0�� hi�1��� (8)

Remark that the multisecant operators �	m

s constitute extensions of both the clas-

sical Ruelle operators and the generalized operators in two senses: first, if ; is the
diagonal of L, i.e., ;�u� �= L�u� u� u� u�, then the operators �	m


s and 
s satisfy

�	m

s 	L
�u� u� u� u� �= 
s	;
�u��

second, the operators �	m

s are generalizations of Gs in the sense that for all m, the

multisecant �	m

s generalizes the secant H

�	m

s 	h
�x� y� x� y� = H	h
s�x� y��
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4.3. Analytic Properties of Operators.

The Mellin transforms of the mean values of the parameters obtained in Section 3.3
involve Dirichlet series 1�s� and 1	m
�s� defined in (3) and (4). These series are
related by (7) and (8) to the quasi-inverses of the operators Gs and �

	m

s . First,

we recall the main properties of the classical Ruelle operator, and then we extend
these properties to the generalized operators. We finally deduce the main analytical
properties of their quasi-inverses.
If condition (d) of the definition of Section 4.1 holds, then we can prove the fol-

lowing: for 
�s� > µ, the Ruelle operator 
s acts on the Banach space A∞�� �
formed with all functions f that are holomorphic in the domain � and are con-
tinuous on the closure �� , endowed with the sup-norm. It is compact and even
more nuclear in the sense of Grothendieck [11, 12]. Furthermore, for real values of
parameter s, it has positive properties that entail (via theorems of Perron–Frobenius
style due to Krasnosel’skij [20]) the existence of dominant spectral objects: there
exists a unique dominant eigenvalue λ�s� positive, analytic for s > µ, a dominant
eigenfunction denoted by ψs, and a dominant projector es. Under the normalization
condition es	ψs
 = 1, these last two objects are also unique. Then, compacity entails
the existence of a spectral gap between the dominant eigenvalue and the remain-
der of the spectrum, that separates the operator 
s in two parts 
s = λ�s��s + �s,
where �s is the projection of 
s onto the dominant eigenspace and involves the
dominant spectral objects λ�s�, ψs, and es under the form �s	h
�x� �= ψs�x�es	h
;
the operator �s is relative to the remainder of the spectrum, so that its spectral
radius is strictly smaller than the dominant eigenvalue.
For s = 1, the classical Ruelle operator is a density transformer, and this property

entails explicit values of some spectral objects. In particular, λ�1� = 1 and e1	f 
 =∫ 1
0 f �x�dx. The operator I − 
s is invertible in the plane 
�s� > 1 and near s = 1,
the operator �I − 
s�−1 decomposes as

�I − 
s�−1 = 1
1 − λ�s��s + �s ◦ �I − �s�−1�

so that it has a simple pole at s = 1. More precisely, its residue at s = 1 satisfies,
for a function f positive on 	0� 1
 and x ∈ 	0� 1
,

lim
s→1

�s − 1��I − 
s�−1	f 
�x� = −1
λ′�1�ψ1�x�

∫ 1

0
f �t�dt�

Two kinds of situations on the line 
�s� = 1 need to be distinguished depending
on the periodicity of the source. A source is said to be periodic if the dominant
eigenvalue function s → λ�s� is periodic (that is λ�s + u� = λ�s� for some u).

(i) In the aperiodic case, the operator �I − 
s�−1 has no other poles on the line

�s� = 1.

(ii) In the periodic case, the operator �I − 
s�−1 has simple poles on the line

�s� = 1 that are regularly distributed, and there is a strip on the left of the
line 
�s� = 1 that is free of poles.
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We now describe the properties of the generalized operators Gs and �
	m

s , and

we denote by �s one of these possible extensions of 
s. Then the order d of the
extension �s is 2 for Gs and 4 for the operators �	m


s .
The operator �s acts on the Banach space �∞�� � formed with all functions

L that are holomorphic in the domain � d and are continuous in the closure �� d,
endowed with the sup-norm. The operator is compact and its spectrum is discrete.
All the operators �s relative to the same value of parameter s have the same
spectrum, denoted by ���s� and the multiplicity of a given eigenvalue in ���s�
only depends on the order d of the extension. The dominant eigenvalue λ�s� is
the same for all the extensions, and positive properties entail the existence of a
dominant eigenfunction denoted by @s, and a dominant projector Es that are easily
related to the spectral objects of 
s, namely, the dominant eigenfunction ψs and
the dominant projector es, via the generalization properties,

@s�u� � � � � u� = ψs�u�� Es	L
 = es	;
� if ; is the diagonal of L.

The operator I − �s is invertible in the plane 
�s� > 1 and near s = 1, the
operator �I − �s�−1 has a simple pole at s = 1. More precisely, its residue at s = 1
satisfies, for a function L positive on 	0� 1
d and x ∈ 	0� 1
d

lim
s→1

�s − 1��I − �s�−1	L
�x� = −1
λ′�1�@1�x�

∫ 1

0
;�t�dt�

where ; is the diagonal mapping of L.
As previously mentioned, two different situations may happen for the quasi-

inverse �I −�s�−1 on the line 
�s� = 1, depending on the periodicity of the source.

4.4. Analytic Properties of Dirichlet Series

We now transfer the properties in the previous paragraph to properties of the
Dirichlet series 1	m
�s�. We then consider analytic properties of Dirichlet series
relative to size and path length of Patricia tries.
Each function 1	m
�s� is analytic on the plane 
�s� > 1. At s = 1� 1	m
�s� has a

pole of order 1, with a residue

rm = −1
λ′�1�K

	m
�� � with K	m
�� � = ∑
i∈�
p(mi @

	m

1 �0� 1� hi�0�� hi�1���

Here, the derivative −λ′�1� coincides with the entropy h�� � of the source. The
constant K	m
�� � is related to the dominant eigenfunction @	m


1 of the operator
�

	m

1 . The equality (valid for a� b� c� d ∈ 	0� 1
)

@
	m

1 �a� b� c� d� = lim

k→∞

(
�

	m

1

)k
	1
�a� b� c� d��

provides another expression for K	m
�� �, that involves the canonical fundamental
probabilities p(w,

K	m
�� � = lim
k→∞

∑
w∈�k

p(w
∑
i∈�

(
p(	i
w


)m
�
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Remark that K	m
�� � satisfies the inequality K	m
�� � ≤ 1. Furthermore, it follows
from the equality K	1
�� � = 1 that the singular expansion of 1�s� = 1	1
�s� is of
the form

1�s� " −1
λ′�1��s − 1� + C�� � f �� (9)

where C�� � f � is a constant depending on the source � and the initial density f .
At s = 1, the Dirichlet series relative to size and path length of Patricia tries

satisfy, via Eqs. (5) and (6)

1S�1� = r1 − ∑
m≥2

rm
m�m− 1� �

1L�1� = − ∑
m≥2

rm
m− 1

�

provided that the series defined in the previous two equations are convergent. Since
the inequality K	m
�� � ≤ 1 holds, the first series is always convergent. However, it
is not a priori true for the second series. Here, Rényi’s condition (d4� of definition
of dynamical sources provides a general framework where such a result is valid.

Proposition 4. Dynamical sources satisfy the uniformity condition �U�: there exists a
constant ρ < 1 such that for all w ∈ �(, all i ∈ �, one has p	i
w
 ≤ ρ�
Proof. We essentially use the condition (d4� together with several applications of
the mean value theorem. First,

p	j
w
 = pw·j
pw

= 
F�hw�hj�0��� − F�hw�hj�1���


F�hw�0�� − F�hw�1��


= 
F ′�c�


F ′�d�



h′
w�e�



h′
w�f �
p

(
j

for some c� d� e� f in 
0� 1	. Since F ′ = f is strictly positive and analytic, there exists
a constant L that bounds the ratio f �c�/f �d�. For any word w = a1 · · · an, the
derivative h′�w� of hw = ha1 ◦ · · · ◦ han satisfies

h′
w�x� = h′

a1
�s1�x�� × · · · × h′

an
�sn�x���

with sk�x� �= hak+1
◦ · · · ◦ han�x� for 1 ≤ i ≤ n− 1 and sn�x� = x, so that

log

h′
w�e�



h′
w�f �
 =

n∑
k=1

�logh′
ak

�sk�e�� − logh′
ak

�sk�f ���

=
n∑
k=1


h′′
ak

�ck�


h′
ak

�ck�


sk�e� − sk�f �
 ≤ Kδn−k�

Here, ck is a point in 
sk�e�� sk�f �	, and the last bound is provided by the conditions
�d2� and �d4�. Finally, there exists a constant K′ �= L exp�K1/�1− δ�� > 1 such that
for all w ∈ �∗ and j ∈ �,

1
K′p

∗
j ≤ p	j
w
 ≤ K′p∗

j �

so that 1 − p∗
	i
w
 = ∑

j #=i
p∗

	j
w
 ≥ 1
K′ �1 − p∗

i � ≥ 1
K′ �1 − p∗�� with p∗ = maxp∗

i �

and the result is thus obtained with ρ = 1 − �1/K′��1 − p∗�.
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Then, the uniformity condition provides the bound K	m
�� � ≤ ρm−1, so that we
can prove the following.

Proposition 5. For a dynamical source that satisfies Rényi’s condition, the two limits

lim
k→∞

∑
w∈�k

p(w
∑
i∈σ

�1−p(	i
w
�
log�1−p(	i
w
�
� lim
k→∞

∑
w∈�k

p(w
∑
i∈�
p(	i
w

log�1−p(	i
w
�


exist and define two constants 1 − C1�� � and C2�� � that can be also expressed with
dominant spectral objects of generalized Ruelle operators. Moreover, the two Dirichlet
series relative to size and path length of Patricia tries satisfy at s = 1

1S�1� = −1
λ′�1��1 − C1�� ��� 1L�1� = 1

λ′�1�C2�� ��

5. ASYMPTOTIC ANALYSIS OF SIZE AND PATH LENGTH

We can now come back to the analysis of additive parameters of tries. First, we give
the main result in the case when the source is a general dynamical source. Then,
we sharpen the result in the case of three specific sources: memoryless sources,
Markovian sources, and the continued fraction source.

5.1. The Main Result
The singular expansions (9) of the Dirichlet series 1�s� and the expression of 1S�1�,
1L�1� of Proposition 5 together with the singular expansion of the function 2�s�
at s = 0 or s = −1 provide the singular expansion of the Mellin transforms near
s = −1. Moreover, under the uniformity condition �U�, the Eqs. (5) and (6) define
two analytic functions at s = 1. In fact, since the spectrum ���s� of the operator
�

	m

s does not depend on m (see [3]), there exists a disk � where all the functions

�s − 1�1	m
�s� are analytic and form a normal family of analytic functions.
Due to the fast decrease of the function 2�s� toward ±i∞, Mellin analysis applies

on the strip �−2�−1� and this entails the following expressions for the average
values of additive parameters of tries. Finally, basic depoissonization techniques
enable us to obtain the asymptotic expressions of the mean values in the Bernoulli
model. These formulas involve the entropy h�� � of the source and three constants
C1�� �� C2�� �, and C�� �. The last constant C�� � depends both on the mechanism
of the source and the initial density f . The first three constants h�� �, C1�� �, and
C2�� � only depend on the mechanism of the source � and are expressible by means
of dominant spectral objects of the Ruelle operators, or alternatively, as limits that
involve canonical fundamental probabilities.

Theorem 1. Let ��n�� � be the Bernoulli model of size n relative to a dynamical
source � with an initial density f . The average values of size and path length of tries
and Patricia tries involve the entropy h�� � of the source and the three constants C1�� �,
C2�� �, and C�� �

h�� � = −λ′�1� = lim
k→∞

∑
w∈�k

p(w
 logp(w
�

C1�� � = 1 − lim
k→∞

∑
w∈�k

p(w
∑
i∈�

�1 − p(	i
w
�
 log�1 − p(	i
w
�
�

C2�� � = lim
k→∞

∑
w∈�k

p(w
∑
i∈�
p(	i
w

 log�1 − p(	i
w
�
�
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Two situations arise depending on the periodicity of the source.

(i) When the source is aperiodic, the expectations of size and path length of tries and
Patricia tries are

Ŝ�n� = 1
h�� �n+ o�n�� ŜP�n� = 1 − C1�� �

h�� � n+ o�n��

L̂�n� − 1
h�� �n log n = n

[
γ

h�� � + C�� � f �
]

+ o�n��

L̂P�n� − 1
h�� �n log n = n

[
γ − C2�� �
h�� � + C�� � f �

]
+ o�n��

(ii) When the source is periodic, the expectations of size and path length of tries and
Patricia tries are

Ŝ�n� = 1
h�� �n	1 +Q�log�n��
 + o�n1−α��

ŜP�n� = 1 − C1�� �
h�� � n+ nQS�log�n�� + o�n1−α��

L̂�z� − 1
h�� �n log n = n

[
γ

h�� � + C�� � f � +Q�log�n��
]

+ o�n1−α��

L̂P�z� − 1
h�� �n log n = n

[
γ − C2�� �
h�� � + C�� � f � +QP�log�n��

]
+ o�n1−α��

The functions Q�u�, QS�u�, and QP�u� depend on the source � and are
of very small amplitude; α is a positive constant, satisfying 0 < α < 1, that is
determined by the width of the region of s such that the spectrum ���s� ∩ �1�
is empty.

5.2. Memoryless Sources

Memoryless sources are defined in Section 4.2. These are sources built on a finite
or infinite alphabet �, where symbol m always occurs with probability pm. The
standard Ruelle operator associated to the system is


s	f 
�x� �= ∑
m∈�
psmf �qm + pmx� with qm �= ∑

i<m

pi�

The initial probabilities p∗
i equal pi and the dominant eigenfunction is the constant

function 1.
All the constants that intervene in the expectations of size and path length of

standard and Patricia tries are expressible in terms of the probabilities pi.

Proposition 6. Consider a memoryless source S with finite or denumerable alphabet
� and probabilities �pi�i∈�. The average values of the parameters involve the four
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constants h�� �, C�� �, C1�� �, and C2�� �

h�� � = ∑
i∈�
pi 
 logpi
� C�� � = 1

2

∑
i∈� pi log

2 pi
�∑i∈� pi logpi�2

�

C1�� � = 1 − ∑
i∈�

�1 − pi� 
 log�1 − pi�
� C2�� � = ∑
i∈�
pi 
 log�1 − pi�


under the form

S�n� ≈ 1
h�� �n� L�n� − n log n

h�� � ≈
[
C�� � + γ

h�� �
]
n�

SP�n� ≈ 1 − C1�� �
h�� � n� LP�n� − n log n

h�� � ≈
[
C�� � + γ − C2�� �

h�� �
]
n�

Some fluctuation terms appear whenever the source is periodic.

These expressions for the constants confirm those obtained for unbiased memo-
ryless sources by Rais, Jacquet, and Szpankowski [25].
Figure 3 shows a plot of the formula (black curves) compared to simulation results

(one dot per trie) for tries (highest curves) and Patricia tries (lowest curves). The
experimentation is performed for size and depth (i.e., L�n�/n) for tries and Patricia
tries built on sets of n words (up to 10000 words) emitted by a memoryless source
of probabilities � 17 � 27 � 47 �.
Remark. Quite often, fluctuations that occur in the case of periodic sources are not
taken into account by the authors. Fayolle et al. [6], Pollicott [23], and Vallée [28]
are the first authors who consider these fluctuations. We recall that the class of
periodic sources includes all unbiased memoryless sources; we give here some other
examples of periodic memoryless sources:

�1/2� 1/4� 1/4�� �p�p�p2� with p = �1/2�(√2 − 1
)
� �1/2m�m≥1�

Fig. 3.
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5.3. Markov Chains

Here, the alphabet � is finite, of cardinality r, and the words are produced by a
Markov chain of order 1, with transition probabilities p	i
j
. The matrix Ds whose
general term is defined by ps	i
j
 plays a central role. For s = 1, it equals the tran-
sition matrix of the Markov chain. The operator 
s is then a matrix operator r × r
that acts on vectors of functions. The dominant eigenvalue of the operator 
s is
exactly the dominant eigenvalue of the matrix Ds, and components of the associ-
ated eigenfunction are constant. For s = 1, the dominant eigenvalue λ�s� equals 1
and the components of the normalized dominant eigenfunction correspond to the
stationary probabilities.

Proposition 7. Consider a Markov chain S with a finite alphabet �, transition prob-
abilities �p	i
j
�i� j∈�, and stationary probabilities �πk�k∈�. The average values of the
parameters involve the three main constants h�� �, C1�� �, and C2�� �

h�� � = − ∑
k∈�
πk

∑
i∈�
p	i
k
 
 logp	i
k

�

C1�� � = 1 − ∑
k∈�
πk

∑
i∈�

�1 − p	i
k
� 
 log�1 − p	i
k
�
�

C2�� � = ∑
k∈�
πk

∑
i∈�
p	i
k
 
 log�1 − p	i
k
�


under the form

S�n� ≈ 1
h�� �n� L�n� − n log n

h�� � ≈
[
C�� � + γ

h�� �
]
n�

SP�n� ≈ 1 − C1�� �
h�� � n� LP�n� − n log n

h�� � +
[
C�� � ≈ γ − C2�� �

h�� �
]
n�

5.4. The Continued Fraction Source

The continued fraction source is a dynamical source on the infinite alphabet N\�0�,
where the dependency of past history is unbounded. This source was extensively
studied by Flajolet and Vallée in [9] and [10]. In this case, the Ruelle operator is
called the Ruelle–Mayer operator,


s	f 
�z� �= ∑
m≥1

1
�m+ z�2s f

(
1

m+ z
)
�

and convergence is granted for any complex s satisfying 
�s� > 1/2. The entropy
of the source is related to Lévy’s constant that intervenes in the metric theory of
continued fractions and the analysis of the Euclidean algorithm [29]. The dominant
eigenfunction of 
1, known as Gauss’ density, is 1/�log 2�1 + x��.

Proposition 8. Consider the continued fraction source � with uniform initial density.
The asymptotic behavior of parameters for tries and Patricia tries involves the four main
constants h�� �, C�� �, C1�� �, and C2�� �.
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The first two constants admit a closed form: they are Levy’s constant and a variation
of Porter’s constant,

h�� � = π2

6 log 2
� C�� � = 12

γ log 2
π2 + 9

�log 2�2
π2 − 72

ζ ′�2� log 2
π4 − 1

2
�

The other constants involve the function pi�x� �= �1 + x�/��i + x��i + 1 + x�� under
the form

C1�� � = 1 − ∑
i≥1

∫ 1

0

1
log 2�1 + x��1 − pi�x�� 
 log�1 − pi�x��
dx�

C2�� � = ∑
i≥1

∫ 1

0

1
log 2�1 + x�pi�x� 
 log�1 − pi�x��
dx�

Proof. The inverse branch relative to symbol m is a linear fractional transformation
(LFT) of the form hm�z� �= 1/�m+ z�, and it is clear that Rényi’s condition holds.
For a prefix w �= a1� � � � � ak of length k, the inverse branch hw �= ha1 ◦ · · · ◦ hak is
a LFT that can be expressed by means of continuants Pk and Qk (see [9])

hw�z� = Pk + Pk−1z

Qk +Qk−1z
� with det �hw� �= PkQk−1 − Pk−1Qk = �−1�k�

This entails a nice expression for the fundamental probabilities p(w = 
hw�0� −
hw�1�


p(w =
[
Q2
k

(
1 + Qk−1

Qk

)]−1

� p(w·i =
[
Q2
k

(
i+ Qk−1

Qk

)(
1 + i+ Qk−1

Qk

)]−1

�

Then, the conditional probability p(	i
w
 only depends on symbol i and rational
Qk−1/Qk whose continued fraction expansion is relative to the mirror ŵ =
ak� � � � � a1 of word w,

p(	i
w
 = 1 + �Qk−1/Qk�
�i+ �Qk−1/Qk���1 + i+ �Qk−1/Qk��

�

The classical relation between continuants, i.e., the equality Pk�w� = Qk−1�ŵ�
entails that

�I − 
s�−1	f 
�0� = ∑
w∈�∗

1
Q2s
k

f

(
Pk
Qk

)
= ∑
w∈�∗

1
Q2s
k

f

(
Qk−1

Qk

)
�

Thus, the Dirichlet series 1�s� and 1	m
�s� defined in (7) and (4) are expressible in
terms of the Ruelle–Mayer operator 
s

1�s� = �I − 
s�−1
[

1
�1 + x�s

]
�0�� 1	m
�s� = �I − 
s�−1	f 	m


s �x�
�0��
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where the functions f 	m

s �x� are defined by

f 	m

s �x� �= 1

�1 + x�s
∑
i≥1

pi�x�m� with pi�x� �= 1 + x
�i+ x��i+ 1 + x� �

Note that pi�x� can be viewed as the probability of emitting symbol i once the
infinite word w corresponding to the mirror of M�x� has been emitted. Finally, the
constants 1 − C1�� � and C2�� � are of the form

C1�� � = 1 − 1
log 2

∫ 1

0
FS�t�dt� C2�� � = 1

log 2

∫ 1

0
FL�t�dt

with

FS�x� = 1
�1 + x�

∑
i≥1

�1 − pi�x��
 log�1 − pi�x��
�

FL�x� = 1
�1 + x�

∑
i≥1

pi�x�
 log�1 − pi�x��
�

The constant C�� � has been determined by Flajolet and Vallée in [10] in their study
of standard tries. They prove that C�� � is a variant of the Porter’s constant.

Remark that the expressions of C1�� � and C2�� � confirm the general form of
Theorem 1. We can get approximation of the constants

1 − C1�� � ≈ 0�87� C2�� � ≈ 0�276�

The first approximation proves that a Patricia trie built on the continued fraction
source contains about 13% less nodes than its associated trie.

5.5. Some Open Questions

Our analysis of the path length requires Rényi’s condition while the corresponding
study of the size does not need this condition.
We ask the following question: Is it possible that the correcting term appears in the

main term of the asymptotic expansion of the path length? This situation may only
occur when the uniformity condition �U� is not fulfilled. We are not aware of any
natural sources for which the uniformity condition does not hold.
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