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Abstract

We study a class of Euclidean algorithms related to divisions where the remainder is
constrained to belong to [α−1,α], for some α ∈ [0,1]. The paper is devoted to the average-
case analysis of these algorithms, in terms of number of steps or bit-complexity. This is a
new instance of the so-called “dynamical analysis” method, where dynamical systems are
made a deep use of. Here, the dynamical systems of interest have an infinite number of
branches and they are not Markovian, so that the general framework of dynamical analysis
is more complex to adapt to this case than previously.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The complexity of most Euclidean algorithms is now well understood. The
first analyses that concern the average number of steps of the standard Euclidean
algorithm were obtained around 1969 independently by Heilbronn [11] and
Dixon [8]. Finally, Hensley [13] provided the analysis in distribution and proved
in 1994 that the Euclidean algorithm has Gaussian behaviour. The centered
algorithm was studied by Rieger [19].
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More recently, Vallée [24] has provided a classification of Euclidean algo-
rithms, in terms of their average number of iterations: some of them are “fast,”
that is, of logarithmic complexityΘ(logN ) (on average and in worst-case) while
others are “slow,” that is, of the “log-squared” type Θ(log2N) on average. (The
worst-case complexity of the slow algorithms is not even polynomial in logN ,
being in fact of order Θ(N).)
On an other hand, Akhavi and Vallée [1,25] have obtained new results about the

precise average bit complexity of classical Euclidean algorithms. Finally, Vallée
[25] proposes a unifying framework for the analysis of the main parameters of
gcd-like algorithms. She proves that the algorithms of the Fast Class have a bit
complexity of the “log-squared” typeΘ(log2N) on average, while the algorithms
of the Slow Class have a bit complexity of the “log-to-the-three” typeΘ(log3N)

on average. Furthermore, she exhibits the precise constants that intervene in the
mean values.

1.1. The class of the α-Euclidean algorithms

All the previous analyzes however deal with particular cases of Euclidean
algorithms, relative to classical divisions: the standard division relative to a
remainder in [0,1[, the centered division, with a remainder in [−1/2,+1/2[,
or the by-excess division with a remainder in [−1,0[. With respect to the
classification previously described, the first two algorithms (i.e., standard and
centered) belong to the Fast Class, while the third one, by excess, belongs to the
Slow Class. It is thus quite natural to study a “generic” Euclidean algorithm, called
the α-Euclidean algorithm, where the remainder has to belong to some interval
[α − 1,α[, with α ∈ [0,1]. When the parameter α varies in [0,1], this gives rise
to a whole class of Euclidean algorithms. There are now natural questions to ask:
Are there other values than 0 of parameter α for which the algorithm belongs to
the Slow Class? How do the number of iterations and the bit complexity evolve
with respect to α? What is the best algorithm in the whole class? In this paper, we
provide some answers to these questions.

1.2. An example of dynamical analysis

Our approach is an instance of dynamical analysis: It consists in viewing an
algorithm of the gcd type as a dynamical system, where each iterative step is
a linear fractional transformation (LFT) of the form z → (az + b)/(cz + d).
A specific set of transformations is then associated to each algorithm. It appears
that the computational complexity of an algorithm is in fact dictated by the
collective dynamics of its associated set of transformations.
Technically, this method relies on a description of relevant parameters by

means of generating functions, a by now common tool in the average case of algo-
rithms [9,10]. As it is usual in number theory contexts, the generating functions
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are Dirichlet series. They are first proved to be algebraically related to specific
operators that are variations of the transfer operator introduced by Ruelle [20,21].
Transfer operators (or Ruelle operators) are one of the main tools in dynamical
system theory, since they encapsulate all the important informations relative to
the “dynamics” of the algorithm; their main analytical property that is useful in
dynamical analysis is the existence of a “spectral gap” that separates the (unique)
dominant eigenvalue from the remainder of the spectrum. In conjunction with
elementary perturbation theory [15], this determines the singularities of Dirich-
let series of costs. The asymptotic extraction of coefficients is then achieved by
means of Tauberian theorems [7,23], a primary tool in multiplicative number the-
ory. Average case estimates of the main parameters finally result. The main thread
of dynamical analysis of algorithms is then adequately summarized by the chain:

algorithm ! dynamical system! transfer operator

! Dirichlet series of costs! Tauberian inversion

! average-case complexity.

1.3. Dynamical systems relative to α-Euclidean algorithms

We are then led to studying the transfer operator associated to the dynamical
system Sα relative to the α-Euclidean algorithm. Here is the main difference with
previous works in dynamical analysis. Previously considered dynamical systems
of interest are “complete”—in the sense that all the branches are surjective—and
the transfer operator is then proven to be compact on some convenient functional
space (usually a space of analytic functions). Here, the involved dynamical system
Sα is no longer “complete”—in the sense that there exist some branches that
are not surjective. Generally speaking, it is not even Markovian, and thus more
complex to study.
When parameter α belongs to [1/2,1], this dynamical system Sα has been

first extensively studied by Ito and Tanaka [14] and Nakada [18]. This is why
the α-Euclidean algorithms are often nicknamed as “Japanese algorithms.” Later,
Moussa et al. [17] provided an extension of these results to the range α ∈ [

√
2−1,

1/2]. All these authors are mainly interested in using the “natural extension”
method, well explained for instance in [22]. When it can be applied, this method
is quite powerful, since it exhibits the explicit form of the invariant density, and
often proves the exactness of the system. This is the case when the parameter α
belongs to the range [

√
2−1,1]. However, this “natural extension”method seems

to fail in the range ]0,
√
2−1[, and it is not possible to prove (with these methods)

the existence of an invariant measure in this range.
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1.4. Dynamical analysis of α-Euclidean algorithms

Even in the range [
√
2 − 1,1], the previous results are not sufficient for

our purpose, since we actually need to prove the existence of a spectral gap.
Moreover (generally speaking), the dynamical system is not complete, and there
are difficulties that are related to the coexistence of two characteristics of the
dynamical system: it is not Markovian, and it has an infinite number of branches.
Then, we have to work with more complex functional spaces, where we cannot
expect the transfer operator to be compact. However, by adapting some results of
Broise [5] to our context, we prove the operator to be quasi-compact on the space
of functions with bounded variation. Then, mixing properties entail the existence
of a unique dominant eigenvalue, so that a spectral gap is granted. Tauberian
Theorems can be then applied and entail the main results of the paper.
Finally, we obtain the following results.

For any parameter α &= 0, all the algorithms Eα belong to the Fast Class.
Consider valid inputs (u, v) of denominator v less than N . Then
(i) the average number of iterations of the algorithm Eα is asymptotically of

logarithmic order

PN(α) ∼ 2
h(α)

logN;

(ii) the average bit complexity of the algorithm Eα is asymptotically of log-
squared order

CN(α) ∼ γ (α) log22N with γ (α) = log2
h(α)

Eα[c].

The mean values involve the entropy h(α) of the dynamical system, together
with a constant Eα[c] related to the mean values of the digits.
For α = 0, the algorithm Eα belongs to the Slow Class: on valid inputs

(u, v) of denominator v less than N , the average number of iterations is of
order log2N , and the average bit complexity is of order log3N .

The involved constants h(α), Eα[c] are explicit as soon as the invariant density
itself is explicit, i.e., in the case when α belongs to [

√
2− 1,1]. For instance, the

entropy h(α) satisfies (here φ := (
√
5+ 1)/2 is the golden ratio)

h(α) =






π2

6 logφ
, for α ∈ [

√
2− 1,φ − 1],

π2

6 log(α + 1) , for α ∈ [φ − 1,1].

We then prove that the average number of iterations of the α-Euclidean algorithms
does not depend asymptotically on parameter α in the central range.
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1.5. Plan of the paper

The plan of the paper follows the main steps of a dynamical analysis.
Sections 2 and 3 are introductory sections where we recall the descriptions of
α-Euclidean algorithms together with the general properties of the associated
dynamical systems. Then, in Section 4, we adapt the general framework of
dynamical analysis to our specific problems: there, we develop the line of attack
outlined earlier and introduce successively Dirichlet generating functions, transfer
operators of the Ruelle type, and the basic elements of Tauberian theory that are
adequate for our purposes. Section 5 is devoted to a functional analysis study of
the transfer operator. The main results are finally derived in Section 6.

2. The class of α-Euclidean algorithms

We first define two Euclidean divisions relative to a parameter α ∈ [0,1]. Then,
we present the Euclidean algorithms associated to these divisions, and introduce
the main parameters of interest for the analysis of bit-complexity.

2.1. The α-Euclidean divisions

The standard Euclidean division deals with positive integers a and b that satisfy
0 ! b < a. It is of the form a = bq + r with 0 ! r < b, so that the rational
r/b belongs to the interval [0,1[. However, one may deal with other Euclidean
divisions, where the rational r/b is constrained to another interval of length one.
More precisely, any interval of the form [α − 1,α[ with α ∈ [0,1] may be used.
The classical cases are α = 1 (standard division), α = 1/2 (centered division),
α = 0 (by-excess division). In this paragraph, we consider any real α in [0,1],
and we define the α-Euclidean division on pairs (a, b) of positive integers,

a = bq̄ + r̄ with α− 1! r̄

b
< α.

The pair (q̄, r̄) is easily computed from the standard pair (q, b) since
{

q := q, r := r, if 0! r < αb,

q := q + 1, r := r − b, if αb ! r < b.
(1)

This division can be easily extended to a pair (a, b) when a and b are not of the
same sign: one deals with the pair (εa, b) where ε is the sign of a/b.
For instance, the standard division, and the 2/3 division applied to 75 and 13

are respectively:

Standard division: 75= 13× 5+ 10,
2/3-division: 75= 13× 6− 3, since 10> 13× (2/3).
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Now, we can “fold” the interval [α − 1,α] and obtain the interval [0,α+], where
α+ = max(α,1 − α), so that α+ always belongs to [1/2,1]. The folded α-
Euclidean division acts on pairs (a, b) of positive integers as

a = bq̂ + ε̂r̂ with 0! r̂

b
! α+.

The triple (q̂, r̂, ε̂) is easily computed from the standard pair (q, b) since
{
q̂ := q, r̂ := r, ε̂ = +1, if 0! r < αb,

q̂ := q + 1, r̂ := b − r, ε̂ = −1, if αb ! r < b.
(2)

We remark that q̂ and q coincide and are both defined by

q̂ = q =
⌊a

b
+ 1− α

⌋
,

where ).* denotes the (usual) integer part.

2.2. The α-Euclidean algorithms (case when α &= 0)

To each Euclidean division is associated a Euclidean algorithm. Here, the
Euclidean algorithm relative to the α-division is called the α-Euclidean algorithm
(folded or unfolded). The unfolded version is denoted by Eα , and the folded
version is denoted by Êα . Each version performs a sequence of iterations, and each
iteration consists in an α-division followed by an exchange. When the parameter
α satisfies α > 0, the point 0 belongs to the interval [α − 1,α[, and the algorithm
stops when the last remainder equals 0.
When given an input (v1, v0) that satisfies (α − 1)|v0| ! v1 < α|v0|, the

algorithm Eα performs a certain number p of α-unfolded divisions, and stops
when the remainder equals 0:

v0 = ε̄1(q̄1v̄1 + v̄2), v1 = ε̄2(q̄2v̄2 + v̄3), . . . ,

v̄p−1 = ε̄p(q̄pv̄p + 0). (3)

It decomposes the rational x := (v1/v0) as (v1/v0) = h̄1 ◦ h̄2 ◦ · · · ◦ h̄p(0), where
the h̄i ’s are linear fractional transformations (LFT) of the form

h̄i = h̄[q̄i ,ε̄i ] with h̄[q,ε](x) = ε

q + x
.

The pair m := [q̄, ε̄] is called the digit pair of the LFT h. The algorithm then
computes the unfolded α-continued fraction expansion of rational x = (v1/v0)
(UCFα-expansion for short):

v1
v0

= ε̄1

q̄1 + ε̄2
q̄2+ ε̄3

q̄3+
ε̄4

...+ ε̄p
q̄p

. (4)
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When given an input (v1, v0) of positive integers that satisfy 0! v1 ! α+v0, the
algorithm Êα performs a certain number p of α-folded divisions, and stops when
the remainder equals 0:

v0 = q̂1v1 + ε̂1v̂2, v1 = q̂2v̂2 + ε̂2v̂3, . . . , v̂p−1 = q̂pv̂p + 0. (5)

It decomposes the rational x := (v1/v0) as (v1/v0) = ĥ1 ◦ ĥ2 ◦ · · · ◦ ĥp(0), where
the ĥis are linear fractional transformations (LFT) of the form

ĥi = ĥ[q̂i ,ε̂i ] with ĥ[q,ε](x) = 1
q + εx .

The pair m := [q̂, ε̂] is called the digit-pair of the LFT. The algorithm then
computes the folded α-continued fraction expansion of rational x = (v1/v0)
(FCFα-expansion for short):

v1
v0

= 1
q̂1 + ε̂1

q̂2+ ε̂2
q̂3+

ε̂3
...+

ε̂p−1
q̂p

. (6)

In fact, the executions of the two Eα algorithms (the folded one and the unfolded
one) on the same pair (v1, v0) of positive integers that satisfies 0! v1 ! α+v0 are
almost exactly the same. Comparison between (6) and (4) provides the relations:

ε̂0 = 1, ε̄1 = sign(v0),

q̂i = q̄i , and ε̂i =
i+1∏

i=2
ε̄j for i " 1, (7)

and at each step, one has v̂i = |v̄i |. In both cases, the last non-zero remainder vp

is the gcd of the pair (v1, v0).
Since both Euclidean algorithms are very similar, we do not always need to

differentiate them. In this case, we shall speak of the α-Euclidean algorithm,
which we denote by Eα .

2.3. The particular case when α = 0

The α-Euclidean algorithm (folded or unfolded) relative to α = 0 is quite
different. Like previously, each version performs a sequence of iterations, and
each iteration consists in a division followed by an exchange. Since the parameter
α equals 0, the point 0 does not belong to the interval [α−1,α[, and the algorithm
stops as soon there exists some remainder that equals the previous one (in absolute
value). For α = 0, the two versions are very similar, and we only describe the
folded version that is exactly the by-excess algorithm.
When given an input (v1, v0) of positive integers that satisfy 0< v1 ! v0, the

algorithm Ê0 performs a certain number p of 0-folded divisions. Here, all the
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signs that are involved are negative, and the algorithm stops as soon as the pair
(v̂p, v̂p+1) satisfies v̂p = v̂p+1:

v0 = q̂1v1 − v̂2, v1 = q̂2v̂2 − v̂3, . . . , v̂p−1 = q̂pv̂p − v̂p+1. (8)

Then, the algorithm decomposes the rational x := (v1/v0) as (v1/v0) = ĥ1 ◦
ĥ2 ◦ · · · ◦ ĥp(1), where the ĥis are linear fractional transformations (LFT) of the
form

ĥi = ĥ[q̂i ,−] with ĥ[q,−](x) = 1
q − x

.

2.4. Bit complexity of the α-Euclidean algorithm

We consider the bit-cost C(v1, v0) of one of the algorithms Eα on input
(v1, v0). Each iteration consists in an α-division of the form (3) or (5) followed
by one exchange. When performing such a division, one proceeds as in (1) or
in (2): one first carries out the standard Euclidean division, then one makes a
comparison between r and b, and finally one possibly performs a subtraction
when ε is negative. Then the cost of each iteration is a product involving the
binary length '(vi) of integer vi and the cost c(hi) relative to the LFT hi , where

c(h[q,ε]) = '(q) + 2+ 1− ε
2

. (9)

We will see that it is possible (for the asymptotics) to replace '(vi) by log2(vi)

that is easier to analyze. Then, when the algorithm performs p iterations on input
(v1, v0), the rational v1/v0 is written as v1/v0 = h1 ◦ · · · ◦ hp(0), and the bit-cost
C(v1, v0) is of the form

C(v1, v0) =
p∑

i=1
log2(vi)× c(hi) with c(hi) = '(qi) + 2+ 1− εi

2
.

It involves three main parameters: the number p of divisions performed by the
algorithm, the digits mi = [qi, εi] and the integers vi . The first two parameters
are easily computed from the FCFα-expansions (6) and (4), and the integers vi

too: The truncated FCF hi+1 ◦ · · · ◦ hp(0) defines a rational of the form ui/wi

with gcd(ui ,wi) = 1. The integer vi is related to denominator wi via the relation

vi = gcd(v1, v0)wi = gcd(v1, v0)D[hi+1 ◦ · · · ◦ hp](0), (10)

where D[h] denotes the denominator of LFT h.
As in [24], we may study more general costs. When given an input pair (u, v),

we consider the rational x = u/v, and we deal with two quantities S[c],K[c] that
depend only on x:

S[c](x) :=
p(x)∑

i=1
c
(
mi(x)
)
, K[c](x) :=

p(x)∑

i=1
c
(
mi(x)
)
logwi(x). (11)
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The third quantity M[c] depends on the pair (u, v) itself and describes the main
cost to be studied:

M[c](u, v) :=
p(u,v)∑

i=1
c
(
mi(u, v)

)
logvi(u, v). (12)

The relation (10) entails the equality

M[c](u, v) = loggcd(u, v)S[c]
(u

v

)
+ K[c]

(u
v

)
, (13)

that allows us to focus on costs S[c] and K[c].

2.5. Average values of costs

Here, Iα denotes one of the two basic intervals Iα := [α − 1,α[ or Îα :=
[0,α+]. We consider the following sets:

Ω̃ :=
{
(u, v):

u

v
∈ Iα
}
, Ω :=

{
(u, v): gcd(u, v) = 1,

u

v
∈ Iα
}
,

Ω̃N := {(u, v) ∈ Ω̃ : v ! N
}
, ΩN := {(u, v) ∈Ω : v ! N

}
,

for the possible inputs of the Eα algorithm. We wish to study the mean value of
M[c] onΩN and Ω̃N , and, thanks to relation (13), we also study the mean values
of S[c] and K[c] on these sets. Notice that the equalityM[c](u, v) = K[c](u/v)
holds as soon as (u, v) belongs to Ω .
We denote by X(u,v) one of the three costs defined in (11), (12) and by

EN [X] or ẼN [X] their mean values on ΩN and Ω̃N . We aim to evaluate the
asymptotic behaviour (for N →∞) of these quantities:

EN [X] = XN

|ΩN | , ẼN [X] = X̃N

|Ω̃N | ,

with XN :=
∑

(u,v)∈ΩN

X(u, v), X̃N :=
∑

(u,v)∈Ω̃N

X(u, v).

3. Dynamical systems

We now relate α-Euclidean algorithms with dynamical systems that can be
viewed as their continuous counterpart. These dynamical systems, denoted by Sα ,
are often called Japanese Euclidean systems. They have been extensively studied
by Nakada [18] and Moussa et al. [17]. These dynamical systems will be the main
supports of our analysis. In this section, we describe the systems and recall their
main properties.
We first recall some basic facts about dynamical systems (of the interval).

In our framework, a dynamical system is a pair S = (I, T ) formed with a



J. Bourdon et al. / Journal of Algorithms 44 (2002) 246–285 255

real interval I and a mapping T :I → I that satisfies the following: The
interval I admits a topological partition P that defines a denumerable family of
intervals. The restriction of T to each interval is monotone and twice continuously
differentiable C2. Then, with an input x ∈ I , the system gives rise to a trajectory
(x, T x,T 2x, . . .). Denote by H the set of inverse branches of T . Then Hn is
the set of possible inverse branches of T n, and H∗ :=⋃n!1Hn is the set of all
possible inverse branches. Each h ofH∗ is a mapping h :Jh → Ih, where Jh is the
interval of I where h is defined, and Ih := h(Jh) is the image of the mapping. For
h ∈ Hn, the interval Ih is called a fundamental interval of depth n. For n = 1,
these intervals are just the intervals related to initial partition P . For n > 1,
a fundamental interval Ih relative to the inverse branch h := h1 ◦ h2 ◦ · · · ◦ hn

gathers all the reals x for which each iterate T j−1(x) belongs to Ihj . When
each branch of T (and then each inverse branch) is labeled by some digit, the
fundamental interval Ih can be labeled by the same digit.

3.1. Unfolded and folded dynamical systems

They are both described in terms of some generalized integer part that we call
the α-integer part. This quantity is defined as

σα(x) := )x + 1− α*,
where )x*= σ1(x) denotes the usual integer part of x .
The unfolded α-dynamical system, denoted by Sα , is relative to interval

Iα = [α − 1,α], and involves the shift T

T (x) =
∣∣∣∣
1
x

∣∣∣∣− σα
(∣∣∣∣
1
x

∣∣∣∣

)
for x &= 0, T (0) = 0.

This gives rise to a numeration process where the digits produced are of the form
m(x) := (q(x), ε(x)) with

q(x) = σα
(∣∣∣∣
1
x

∣∣∣∣

)
, ε(x) = sign(x).

The inverse branches of T are of the form h̄[q,ε](x) = ε/(q + x). This dynamical
system appears in quite a natural manner: First, we draw the set of all the maps
Fi defined on [−1,1] \ {0} by

Fi(x) =
∣∣∣∣
1
x

∣∣∣∣− i,

for any integer i " 1. Then, we only “keep” the window Iα × Iα = [α− 1,α] ×
[α− 1,α], and obtain the representation of the dynamical system Sα (see Fig. 1).
The folded dynamical system, denoted by Ŝα , is related to interval Îα=[0,α+],

with α+ =max(α,1− α) and involves the shift T̂

T̂ (x) =
∣∣∣∣
1
x
− σα
(
1
x

)∣∣∣∣ for x &= 0, T̂ (0) = 0.
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Fig. 1. The family of dynamical systems Sα .

This gives rise to a numeration process where the digits produced are of the form
m̂(x) := (q̂(x), ε̂(x)) with

q̂(x) = σα
(
1
x

)
, ε̂(x) = sign

(
1
x
− σα
(
1
x

))
.

The inverse branches of T̂ are of the form ĥ[q,ε](x) = 1/(q + εx). The
representation of this folded dynamical system Ŝα is easily obtained by folding
the representation of the unfolded system Sα . One first uses a folding along the
y-axis, then along the x-axis (see Fig. 2).
It is then clear that the properties of both dynamical systems Sα are similar.

The unfolded one (Sα) is more natural from the dynamical point of view, while
the folded one (Ŝα) is more natural from the computational point of view.
Furthermore, the execution of the α-Euclidean algorithm on some valid input
(u, v) is exactly described by the trajectory of rational x = u/v under the action
of dynamical system Sα , namely the sequence (x, T x,T 2x, . . .) that becomes
stationary when the pth iterate T p(x) attains 0.

3.2. Fundamental intervals and digits

The integer pair m := [q, ε] is called the digit. The α-algorithms do not use all
digits of the set N+ × {+,−}. The set Dα of the possible digits is the same for
both algorithms relative to the same value α. It involves the values of
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Fig. 2. Representation of an unfolded dynamical system and its folded version.

r+(α) := σα
(
1
α

)
=
⌊
1+ 1− α2

α

⌋
,

r−(α) := σα
(

1
1− α

)
=
⌊
2+ α2

1− α

⌋
,

under the form

Dα =
{
[q,−]: q " r−(α)

}
∪
{
[q,+]: q " r+(α)

}
.

Note that r−(α) (respectively r+(α)) tends to infinity whenever α tends to 1
(respectively 0). The set of all possible inverse branches is denoted byH[α].
There are three different ranges for parameter α, delimited by the two numbers√
2− 1 and φ − 1 (here φ is the golden ratio φ = (1+

√
5)/2): The right range

is the interval [φ− 1,1] where r+(α) = 1 and r−(α) " 3; the central range is the
interval [

√
2 − 1,φ − 1] where r+(α) = 2 and r−(α) = 2; the left range is the

interval [0,
√
2− 1] where r+(α) " 3 and r−(α) = 2. The first change of range

at φ − 1 arises when the digit [1,+] disappears, and the second change of range
arises when the digit [2,+] disappears.
The partition of Iα relative to Sα is formed by the intervals

I [q,+] =
[

1
q + α ,

1
q + α − 1

]
with q &= r+(α) and

I [r+(α),+] =
[

1
r+(α) + α ,α

]
,

I [q,−] =
[ −1
q + α − 1 ,

−1
q + α

]
with q &= r−(α) and

I [r−(α),−] =
[
1− α, −1

r−(α) + α

]
.
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The restriction of shift T to I [q,ε], denoted by T [q,ε] is given by T [q,ε](x) =
(ε/x) − q , and maps the interval I [ε,q] on the interval J [q,ε]. All the intervals
J [q,ε] equal Iα except for the two extremal branches where

J [r−(α),−] =
[

1
α − 1 + r−(α),α

]
, J [r+(α),+] =

[
1
α

− r+(α),α

]
.

The partition of Îα relative to Ŝα is obtained by “folding”.Iα onto Îα .

3.3. Characteristics of dynamical systems Sα

The three classical cases α = 0,1,1/2 lead to three dynamical systems that
are not at all generic instances of the class. In these cases, both versions of Sα
are Markovian, and often “complete” in the sense that all its branches define
surjective mappings. This is quite different in the “generic” case where the two
extremal branches are “incomplete.” Generally speaking, this dynamical system
is not even Markovian, in the sense defined below.
We recall the definition of a Markovian dynamical system.

Fig. 3. Classical examples of continued fraction expansions (α = 0,1/2,1).
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Definition. A system S = (I, T ) relative to a partition P of interval I is
Markovian if the set

T ∗ :=
⋃

n!1
T n(P) (14)

is finite.

Since the system Sα has at most two incomplete branches (that are the extremal
ones), the set T (P) satisfies

T (P) = {α,α − 1, T (α), T (α − 1)}.
Then, the system Sα may be Markovian only in two cases:

(i) Both sequences T i(α) and T i(α − 1) are stationary at 0, which happens if
and only if α is rational.

(ii) There exists an integer i " 1 for which
{
T i(α), T i(α−1)}⊂ {T j (α): 0! j <i

}∪ {T j (α−1): 0! j <i
}
,

which may happen only if α is irrational quadratic.

Note that there exist relations between points of T ∗, namely:

T (α − 1) = T 2(α) for
√
2− 1! α < φ − 1,

T 2(α − 1) = T 2(α) for φ − 1! α ! 1.

3.4. Invariant density

Existence and unicity of an invariant density is central in the study of a general
dynamical system. The following result, due to Nakada [18] and Moussa et
al. [17], describes the invariant density of dynamical system Sα when α belongs
to the central or to the right range.

Theorem (Nakada; Moussa, Cassa, Marmi). For α "
√
2 − 1, the dynamical

system Sα admits a unique invariant density ψ
[α], with an explicit form. This

explicit form is different in the right range [φ − 1,1] and in the central range
[
√
2− 1,φ− 1]:

• for φ − 1! α ! 1:

ψ
[α]

(t) = 1
log(1+ α)






1
2+ t

when t ∈
[
α − 1, 1− α

α

[
,

1
1+ t

when t ∈
[
1− α
α

,α

[
,
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• for 1/2! α ! φ − 1:

ψ
[α]

(t) = 1
logφ






1
φ2 + t

when t ∈
[
α − 1, 1− 2α

α

[
,

1
2+ t

when t ∈
[
1− 2α
α

,
2α− 1
1− α

[
,

1
φ + t

when t ∈
[
2α− 1
1− α ,α

[
,

• for
√
2− 1! α ! 1/2:

ψ
[α]

(t) = 1
logφ






1
φ2 + t

when t ∈
[
α− 1, 2α− 1

1− α

[
,

1
φ2 + t

+ 1
φ + t

− 1
2+ t

when t ∈
[
2α− 1
1− α ,

1− 2α
α

[
,

1
φ + t

when t ∈
[
1− 2α
α

,α

[
.

The invariant density ψ̂ [α] is obtained by folding the density ψ [α]. Moreover, the
dynamical systems Sα and Ŝα are mixing.

For α "
√
2 − 1, the invariant density surprisingly has a simple expression,

since it has at most two discontinuities at points T (α − 1) and T (α). Remark
that this density may have a priori discontinuities at each point of set T ∗ defined
in (14). The existence of an invariant density is not known in the left range
[0,

√
2 − 1]. Moussa et al. [17] proved the existence of the invariant measure

for some particular values of α in the left range (e.g., α = 2− φ,α = 2/5) while
exhibiting its explicit form. They note that the explicit form involves in these cases
an infinite number of terms of the form 1/(ak + x).

3.5. Entropy

The entropy h(α) of the dynamical systems Sα is closely related to the
mean value Eα[|logx|] of the variable x → |logx| with respect to invariant
density ψ [α]. Since |T ′(x)| = 1/x2,

Eα
[
|logx|

]
:=
∫

Iα

|log t|ψ [α](t)dt = 1
2

∫

Iα

log
∣∣T ′(t)
∣∣ψ [α](t)dt = h(α)

2
,
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so that explicit values of entropy are obtained in each range:

h(α) =






π2

6 logφ
, for α ∈ [

√
2− 1,φ − 1],

π2

6 log(α + 1) , for α ∈ [φ − 1,1].
(15)

3.6. Mean value of the binary length of digits

Denote by m the digit-function that associates to x ∈ Iα the pair m(x) :=
[q(x), ε(x)]. Consider any digit-cost c :Dα → R+ such that c ◦ m is in L1. It
is possible to compute the average value of c ◦ m with respect to any density f .
When the density is the invariant densityψ [α], this mean value, denoted byEα [c],
equals

Eα [c] :=
∫

Iα

c
(
m(t)
)
ψ [α](t)dt =

∑

m∈Dα
c(m)

∫

Im

ψ [α](t)dt . (16)

We are interested in the case when the cost c is the binary length ' of digit q .
In the central and right ranges, the expression of Eα[c] is completely explicit
but not so simple to write. Here, we provide the expression of this constant for
particular values of parameter α. These particular values φp belong to the right
range and correspond to Markovian dynamical systems where the leftmost branch
is complete and the point T (α) = 1/α−1 is the endpoint of a fundamental interval
relative to digit r = 2p − 1. More precisely, the value φp satisfies

T (α − 1) = α − 1, T (α) = 1
α

− 1= 1
r + α ;

it is thus a quadratic irrational of the form

α = φp := 1
2
(
−r +
√

r2 + 4r
)
, with r = 2p − 1, p " 1.

Finally, the average digit-cost Eα['] relative to the binary length of digit satisfies,
for α = φp,

Eα['] = log(1+α)

[

(2+ α)
p∏

k=2

2k + α
2k − 1+ α

∞∏

k=p+1

2k + 2α − 1
2k + 2α − 3

]

. (17)

3.7. Mean value of the sign

The mean value of the sign ε (with respect to ψ [α]) and the mean value of the
sign ε̂ (with respect to ψ̂ [α]) are equal. This is due to the strong relation that holds
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between the signs of the different algorithms (7). One has

Eα

[
1− ε
2

]
:= Prα[ε = −1]

=






log2
logφ

− 1, for α ∈ [
√
2− 1,φ− 1],

log2
log(α + 1) − 1, for α ∈ [φ − 1,1].

(18)

3.8. Density transformer and transfer operator

For a general dynamical system S , the density transformer (also known as the
Perron–Frobenius operator) describes the evolution of the densities when iterating
shift T . It is defined as

H[f ](x) :=
∑

h∈H

∣∣h′(x)
∣∣f ◦ h(x)1Jh(x).

If f is the initial density on interval I , thenH[f ] is the density after one iteration
of shift T . Then, an invariant density is exactly an eigenfunction of H relative to
the eigenvalue 1.
In the sequel, an extension of the density transformer, that is called the

transfer operator (or the Ruelle operator) plays a fundamental rôle. It depends
on a (complex) parameter s and is defined as

Hs[f ](x) :=
∑

h∈H

∣∣h′(x)
∣∣s/2f ◦ h(x)1Jh(x), (19)

so that H2 =H. Moreover, the nth iterate of Hs can be written as

Hn
s [f ](x) :=

∑

h∈Hn

∣∣h′(x)
∣∣s/2f ◦ h(x)1Jh(x).

4. Dynamical analysis in the case when α != 0. First steps

We present here the main tools involved in the analysis of the α-Euclidean
algorithms (for α &= 0). We mainly deal with Dirichlet generating functions that
are relative to costs, so that the average cost involves partial sums of coefficients of
these Dirichlet series. We then use Tauberian theorems that transfer the analytical
behaviour of a Dirichlet series near its singularities into an asymptotic form
for its coefficients. Then, when viewing the algorithm as a dynamical system,
we relate generating functions of costs to the Ruelle operator associated to the
algorithm.
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4.1. Dirichlet generating functions

We recall that we consider (cf. Section 2.5)

Ω̃ :=
{
(u, v):

u

v
∈ Iα
}
, Ω :=

{
(u, v): gcd(u, v) = 1,

u

v
∈ Iα
}
,

Ω̃N :=
{
(u, v) ∈ Ω̃: v ! N

}
, ΩN :=

{
(u, v) ∈Ω : v ! N

}
,

for the possible inputs of the Eα algorithm. Given a cost function X(u,v), we
introduce the following Dirichlet generating functions of costs:

F(s) :=
∑

(u,v)∈Ω

1
vs

=
∑

n!1

an

ns
, F̃ (s) :=

∑

(u,v)∈Ω̃

1
vs

=
∑

n!1

ãn

ns
, (20)

GX(s) :=
∑

(u,v)∈Ω

X(u,v)

vs
=
∑

n!1

xn

ns
,

G̃X(s) :=
∑

(u,v)∈Ω̃

X(u,v)

vs
=
∑

n!1

x̃n

ns
, (21)

where an, ãn are the number of pairs (u, v) of Ω or Ω̃ with fixed v = n, and
xn, x̃n are the cumulative values of cost X on pairs (u, v) of Ω or Ω̃ with fixed
v = n. Then, there are alternative expressions for the expectation of costs on sets
ΩN or Ω̃N ,

EN [X] =
∑

n"N xn∑
n"N an

, ẼN [X] =
∑

n"N x̃n∑
n"N ãn

,

that involve sums of coefficients of previous Dirichlet series defined in (20)
and (21).

4.2. Tauberian theorems

In the remainder of the paper, we aim at applying the following Tauberian
Theorem to the previous Dirichlet series F,GX defined in (20) and (21) in order
to estimate their coefficients.

Tauberian theorem (Delange). Let F(s) be a Dirichlet series with non-negative
coefficients such that F(s) converges for 1(s) > σ > 0. Assume that

(i) F(s) is analytic on 1(s) = σ, s &= σ , and
(ii) for some γ " 0, one has, for s near σ , F(s) = A(s)(s − σ )−γ−1 + C(s),

where A, C are analytic at σ , with A(σ ) &= 0.
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Then, as N →∞,
∑

n"N

an = A(σ )

σΓ (γ + 1)N
σ logγN

[
1+ ε(N)

]
, ε(N) → 0.

We first examine the case of functions F(s), F̃ (s) that are closely linked to the
Riemann series ζ(s),

ζ(s) :=
∑

v!1

1
vs

,

via the equalities F̃ (s) = ζ(s)F (s) and F̃ (s) = ζ(s − 1). Then, classical
properties of the ζ function entail that the Tauberian theorem applies to F(s) and
F̃ (s), with σ = 2 and γ = 0. More precisely, at s = 2, one has: (s − 2)F (s) 2
6/π2.
It is not a priori clear how to directly apply Tauberian Theorems to GX(s). In

the following, we obtain alternative expressions forGX(s), G̃X(s) fromwhich the
location and the nature of their singularities will become apparent. Our analysis
involves suitable Ruelle operators that can be viewed as extensions of density
transformers when one introduces some complex parameter s.
Since the first two costs X in (11) depend only on the rational (u/v), there

exists a relation between GX and G̃X , namely G̃X(s) = ζ(s)GX(s). The last
cost, defined in (12), involves integers vi , and depends on pair (u, v) itself, so
that, with (13),

GM[c](s) = GK[c](s), G̃M[c](s) = −ζ ′(s)GS[c](s) + ζ(s)GK[c](s).
(22)

Altogether, it is sufficient to analyze the first two costs S[c] and K[c] on the
set ΩN .

4.3. Ruelle operators of costs

The Ruelle operatorRs,h relative to a LFT h defined on the interval Jh depends
on some complex parameter s and is defined as

Rs,h[f ](x) := 1
D[h](x)s

f ◦ h(x) 1Jh(x), (23)

where D[h] denotes the denominator of the linear fractional transformation
(LFT) h, defined for h(x) = (ax +b)/(cx+d) with a, b, c, d coprime integers by
D[h](x) := |cx + d| = |deth|1/2|h′(x)|−1/2. Then, for a LFT h of determinant 1,
the operator Rs,h is exactly a term of the density transformerHs defined in (19).
Once a cost function c relative to the LFT h has been fixed, one can define

another Ruelle operator relative to h:

R[c]
s,h[f ](x) := c(h)

D[h](x)s
f ◦ h(x) 1Jh . (24)
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Now, given an algorithm and a set H of LFTs used in one step of the algorithm,
the Ruelle operators relative toH are defined in (19) and alternatively by

Hs :=
∑

h∈H
Rs,h, H[c]

s :=
∑

h∈H
R[c]

s,h. (25)

In all cases, the multiplicative property of denominator D, i.e., D[h ◦
g](x) = D[h](g(x))D[g](x) is translated into a multiplicative property on Ruelle
operators: given two LFTs, h and g, the Ruelle operator Rs,h◦g associated to the
LFT h ◦ g is exactly the operator Rs,g ◦ Rs,h. In particular, the Ruelle operator
relative to set Hn is the nth iterate Hn

s and the Ruelle operator relative to the
semi-groupH∗ is the quasi-inverse (I −Hs)

−1.

4.4. Ruelle operators and Dirichlet generating functions

We now show how the Ruelle operators associated to the algorithms intervene
in the evaluation of the generating functions of costsGX(s), G̃X(s). We recall that
it is sufficient to study GX for one of the two costs of (11). We consider here the
Eα algorithm and its set of LFTs H[α]. The index α will be omitted in the sequel
of this section. The Ruelle operatorsHs,H[c]

s relative toH will play a central rôle
in the analysis.
For α &= 0, an execution of the algorithm on the input (v1, v0) ofΩ performing

p steps decomposes the rational (v1/v0) as
(v1/v0) = h1 ◦ h2 ◦ · · · ◦ hp(0). (26)

The choice of an index i,1 ! i ! p, splits the LFT h = h1 ◦ h2 ◦ · · · ◦ hp into
three different parts: the beginning part bi(h) := h1 ◦ h2 ◦ · · · ◦ hi−1, the ending
part ei(h) := hi+1 ◦ hi+2 ◦ · · · ◦ hp, and finally the ith component hi . Then, as
in (10), the following equality holds:

D
[
ei(h)
]
(0) = wi = vi

gcd(v1, v0)
. (27)

For some operator Ls that depends on parameter s, the operator ∆Ls is defined
by

.Ls := − 1
log2

d
ds
Ls .

When applied to Rs,h defined in (23), it is well-suited to the problem since it
produces at the numerator the logarithm log2D[h]. When applied to Rs,bi(h), it
produces at the numerator, via (27), the quantity log2wi .
We now introduce our main operators, that are all built according to the same

principles: each of them is precisely related to one of the generic costs X defined
in (11), and the generic operator, relative to generic cost X, is denoted by Xs,h. If
h is a LFT of depth p, the operator Xs,h is expressed as a sum of p terms each of
which may involve .Rs,bi(h),.Rs,ei(h), and R[c]

s,hi
; however, the precise form of

Xs,h depends on cost X. The operators relative to the studied costs S[c] and K[c]
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are respectively

for X = S[c], Xs,h =
p∑

i=1
Rs,ei (h) ◦R[c]

s,hi
◦Rs,bi(h),

for X = K[c], Xs,h =
p∑

i=1
∆Rs,ei (h) ◦R[c]

s,hi
◦Rs,bi(h).

We claim that, when applied to function f = 1 and point x = 0, each operator
Xs,h generates the cost X(v1, v0) of the algorithm on input (v1, v0) ofΩ

Xs,h[1](0) = 1
vs
0
X(v1, v0),

when (v1, v0) ∈Ω satisfies
v1
v0

= h(0) with h ∈H∗.

Now, when (v1, v0) is a general element of Ω , the LFT h defined by (26) is a
general element of set H∗, so that we obtain alternative expressions of the main
Dirichlet series F,GX defined in (20) and (21)

F(s) :=
∑

(v1,v0)∈Ω

1
vs
0

=
∑

h∈H∗
Rs,h[1](0), and

GX(s) :=
∑

(v1,v0)∈Ω

1
vs
0

X(v1, v0) =
∑

h∈H∗
Xs,h[1](0).

Now, when h is a general element of H∗ and i a general index in [1..p], the
beginning part bi(h) and the ending part ei(h) are general elements ofH∗, while
hi is a general element of H. Then, the following expressions

GS[c](s) = (I −Hs)
−1 ◦H[c]

s ◦ (I −Hs)
−1[1](0),

GK[c](s) =.
[
(I −Hs)

−1] ◦H[c]
s ◦ (I −Hs)

−1[1](0),
involve Ruelle operatorsHs and H[c]

s defined in (25), and finally,

GK[c](s) = (I −Hs)
−1 ◦.Hs ◦ (I −Hs)

−1 ◦H[c]
s ◦ (I −Hs)

−1[1](0).
Now, we use relation (22), and we obtain the main result of this section.

Theorem 1. The main Dirichlet series of interest admit alternative expressions
that involve the quasi-inverse of the transfer operatorHs relative to the dynamical
system S . More precisely, the main terms (i.e., the terms that contain the maximal
number of occurrences of the quasi-inverse (I −Hs)

−1) of the Dirichlet series
F(s) and the two Dirichlet series GX(s) relative to the depth X = p and bit
complexity X = C can be written as

F(s) 3 (I −Hs)
−1[1](0), Gp(s) 3 (I −Hs)

−2 ◦Hs[1](0),
GC(s) 3 (I −Hs)

−1 ◦.Hs ◦ (I −Hs)
−1 ◦H[c]

s ◦ (I −Hs)
−1[1](0).
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Here A 3 B means that B is the main term in A.

In the following section, we shall study the properties of the transfer opera-
tor Hs , and prove that Tauberian theorem can be applied to these Dirichlet series.

5. Spectral properties of the transfer operator (Case α != 0)

We study in this section main properties of the transfer operator relative to
the Sα dynamical systems. As we said previously, these dynamical systems are
not so easy to study, because of two main facts: first, they have a denumerable
number of branches; second, they are not Markovian (in the general case). Most
of the classical results are stated for dynamical systems that possess one of two
properties: they are Markovian or they have a finite number of branches. We
follow here the main lines of Broise’s work [5], that we adapt in our context.

5.1. Dynamical systems with good properties

We work in a classical functional space, namely the space of functions with
bounded variation. We shall prove in the sequel that, provided that the dynamical
system S satisfies some “good” properties, the transfer operator Hs fulfils all the
needed properties.
We first recall our general framework that we have already described in

Section 3. We consider a dynamical system S = (I, T ) that satisfies the
following: The interval I admits a topological partition P that defines a
denumerable family of intervals. The restriction of T to each interval is monotone
and C2. Denote by H the set of inverse branches of T . Then Hn is the set of
possible inverse branches of T n, and H∗ :=⋃n!1Hn is the set of all possible
inverse branches. Each h of H∗ is a mapping h :Jh → Ih. The quantities δh, ∆n

and 'n that are defined as follows:

δh := sup
{∣∣h′(x)

∣∣: x ∈ Jh

}
, ∆n := sup

{
δh: h ∈Hn

}
,

'n := inf
{|Jh|: h ∈Hn, |Jh| > 0

}

will play an important rôle in the sequel, and in the following six properties that
we now describe:

(p0) There exist a real constant b > 0 and an exponent β > 0 for which |h′(x)| "
b|h(x)|β , ∀h ∈H, ∀x ∈ Jh.

(p1) [Weak expansion] The quantity∆1 satisfies ∆1 ! 1.
(p2) [Strong expansion] There exists an integer n0 and a real constant γ < 1 for

which ∆n0 ! γ .
(p3) [Bounded distortion] There exists a real constant c > 0 for which |h′′(x)| !

c|h′(x)|, ∀h ∈H, ∀x ∈ Jh.
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(p4) [Quasi-Markov] All the quantities 'n are strictly positive.
(p5) [Topological mixing]For any pair of two non-empty open sets (V ,W), there

exists n2 " 1 such that T −nV ∩W &= ∅ for all n " n2.

Remark 1. When the dynamical system has a finite number of branches,
properties (p3) and (p4) are always fulfilled. When the system is Markovian,
property (p4) is always fulfilled.

Remark 2. Remark first that if T satisfies properties (p1), (p3), then, for any
integer n " 1, the iterate T n also satisfies the same properties (p1), (p3). The
constant cn of property (p3) relative to T n satisfies cn ! cn. If T satisfies
properties (p1)–(p3), then, the iterate T n also satisfies the same properties (p1)–
(p3). More precisely, in this case, for any integer n, one has (see [16] or [4]):

∆n ! γ )n/n0*, cn = c

n−1∑

i=0
∆i ! cn0

1− γ . (28)

Remark 3. By using property (p1) (for ρ " 1) and property (p0) (for ρ < 1), one
gets
∣∣h′(x)
∣∣ρ !
∣∣h′(x)
∣∣ for ρ " 1,

∣∣h′(x)
∣∣ρ ! bρ−1

∣∣h′(x)
∣∣∣∣h(x)
∣∣β(ρ−1) for ρ < 1. (29)

Then, with the change of variables u := h(x), we deal with

I (ρ) := 1 for ρ " 1, I (ρ) := bρ−1
∫

I

∣∣uβ(ρ−1)∣∣du for ρ < 1,

(30)

and since the integral I (ρ) is convergent for ρ = 1(s) > 1 − (1/β), we obtain,
for ρ = 1(s) > 1− (1/β):
∑

h∈H

∫

Jh

∣∣h′(x)
∣∣ρ dx ! I (ρ). (31)

Remark 4.With (p3), the following property holds (see [16] or [4]):

(p6) There exists d > 0 such that, for any h ∈H, one has:

sup
Jh

∣∣h′(x)
∣∣! d inf

Jh

∣∣h′(x)
∣∣.

Then, one has, with (p4), for any h ∈H, and any real positive ρ:
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sup
Jh

∣∣h′(x)
∣∣ρ ! dρ inf

Jh

∣∣h′(x)
∣∣ρ ! dρ

|Jh|

∫

Jh

∣∣h′(x)
∣∣ρ dx ! dρ

'1

∫

Jh

∣∣h′(x)
∣∣ρ dx,

(32)

and, with (32), (31), one obtains
∑

h∈H
δ
ρ
h ! dρ

'1
I (ρ). (33)

We prove now that the dynamical systems relative to α-Euclidean algorithms
satisfy all the previous conditions for α &= 0.

Proposition 1. For α∈ ]0,1], both dynamical systems Sα satisfy conditions (p0)–
(p5). For α = 0, the systems Sα satisfy (p0)–(p4).

Proof. For any α ∈ [0,1], the LFTs h of H satisfy
∣∣h′(x)
∣∣=
∣∣h(x)
∣∣2,

∣∣h′(x)
∣∣! 1,

∣∣h′′(x)
∣∣= 2
∣∣h′(x)
∣∣3/2 ! 2

∣∣h′(x)
∣∣,

and properties (p0), (p1), and (p3) are fulfilled. Property (p2) is satisfied with
n0 = 1 provided that 0 < α < 1. However, for α = 1, property (p2) is satisfied
with n0 = 2. The situation is quite different for α = 0, since the point x = 1 is an
indifferent fixed point (i.e., a point where T (x) = x and |T ′(x)| = 1). Then, there
does not exist any integer n0 for which property (p2) holds.
Since the dynamical system Sα has only at most two incomplete branches, the

set T (P) has only four elements α, α − 1, T (α), T (α − 1). The set T n(P) has a
finite cardinality—at most equal to |T (P)|n—and the quantity 'n is an infimum
of a finite number of strictly positive numbers, and it is then strictly positive. Then
property (p4) is satisfied.
When proving property (p5) for α &= 0, we use two main properties:

(q1) The set {h(0): h ∈H∗} coincides with I ∩Q. It is then dense in I , and any
open set W contains a rational, namely, some x = h0(0) relative to some
rinverse branch h0 of depth k. Then, for any open set W , there exist some
open set U that contains 0, and some integer k " 1 for which T −k(U) is
contained inW .

(q2) For any open set V , and for any n " 1, the set T −n(V ) contains points that
are arbitrarily near to 0. Then, for any open set U that contains 0, the set
T −n(V )∩ U is not empty.

Finally, for any pair (V ,W) of open sets, the set T −k(T −n(V )∩U) is not empty,
and, for any n " 1,

∅ &= T −k
(
T −n(V )∩ U

)
= T −(k+n)(V )∩ T −k(U) ⊂ T −(k+n)(V )∩ W,

so that the dynamical system Sα is topologically mixing. "
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In the sequel of this section, we deal with a general dynamical system that
satisfies properties (p0)–(p5). We shall prove the following main facts: With
(p0)–(p4), we first show that the operator H2s is analytic (in s) near s = 1
(Proposition 2), then, with (p1)–(p4), we evaluate its essential spectrum when
s = 1 (Proposition 3), and we prove in Proposition 4 that the density transformer
H = H2 has an eigenvalue equal to 1. Finally, we make use of property (p5)
when proving the unicity of the dominant eigenvalue. All these results together
entail Theorem 2, where we prove that the quasi-inverse (I −H2s)−1 fulfils the
hypotheses of the Tauberian Theorem near s = 1.

5.2. Functions with bounded variation

We cannot use the same arguments as in previous works on dynamical analysis
where one deeply uses compactness of the Ruelle operator on a space of analytic
functions.We cannot work on such functional spaces because, generally speaking,
the transform Hs[f ] of a continuous function f by Hs is not continuous. This is
due to the discontinuities brought by the incomplete branches.We have to work in
a larger functional space, and a classical space in this case is the space of functions
with bounded variation.
The variation

∨b
a f of a function f on the interval [a, b] is defined by

b∨

a

f = sup
π∈Q

n∑

i=1

∣∣f (xi)− f (xi−1)
∣∣,

where Q is the set of finite partitions π of the form a = x0 < x1 < · · · < xn = b.
The space of functions with bounded variation on the interval I is denoted by
BV(I). Equipped with the norm ‖.‖BV defined by

‖f ‖BV =
∨

I
f + ‖f ‖1,

this space is a Banach space, dense in L1.
We first recall classical results on variation that will be used in the sequel. Let

f , g be functions of bounded variation, and [a, b] an interval. Then, variation
fulfils the main seven properties:

(i)
b∨

a

(f + g) !
b∨

a

f +
b∨

a

g,

(ii)
b∨

a

f +
c∨

b

f =
c∨

a

f,

(iii)
b∨

a

(f ◦ g) =
d∨

c

f, if g
(
[a, b]
)
= [c, d],
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(iv)
b∨

a

|fg| ! sup
[a,b]

|g|
b∨

a

|f | + sup
[a,b]

|f |
b∨

a

|g|,

(v)
b∨

a

|f |1[c,d] ! 2
d∨

c

|f | + 2 sup
[c,d]

|f | for [c, d] ⊂ [a, b],

(vi) ‖f ‖∞ !
b∨

a

|f | + 1
b − a

‖f ‖1,

(vii)
b∨

a

|f | =
b∫

a

∣∣f ′(x)
∣∣dx for f ∈ C1.

Proposition 2. Let a dynamical system S satisfy (p0)–(p4). Then, for 1(s) >
1 − (1/β), the Ruelle operator H2s relative to dynamical system S acts on the
space BV(I) and is analytic in s.

Proof. For f ∈ BV(I), one has
∥∥H2s[f ]

∥∥
1 !
∑

h∈H

∫

I

∣∣h′s(x)f ◦ h(x)1Jh(x)
∣∣dx

!
∑

h∈H

∫

Jh

∣∣h′(x)
∣∣ρ ∣∣f ◦ h(x)

∣∣dx,

and, with (31) and (vi), one obtains
∥∥H2s[f ]

∥∥
1 ! I (ρ)‖f ‖∞ ! I (ρ)‖f ‖BV. (34)

The variation of H2s[f ] satisfies
∨

I
H2s[f ] =

∨

I

∑

h∈H
h′sf ◦ h1Jh !

∑

h∈H

∨

I

∣∣h′ρf ◦ h1Jh

∣∣.

Upon applying (v) and (iv) in each term of the sum, one obtains
∨

I
Hs[f ] ! A + B + C with A =

∑

h∈H
Ah, B =

∑

h∈H
Bh, C =

∑

h∈H
Ch,

and
Ah = δρh

∨

Jh

|f ◦ h|, Bh = 4δρh sup
Ih

|f |, Ch = sup
Ih

|f |
∨

Jh

|h′ρ |.

Now, with (iii), (ii) and property (p1), one getsAh !∨Ih
|f |; so thatA !∨I |f |.

For quantityCh, we use (vii) and notice that (p3) entails |h′ρ |′ = ρ|h′′||h′|ρ−1 !
cρ|h′|ρ . Now, we use (31) for Ch, and (33) for Bh, and we get
∨

I
H2s[f ] !

[
1+
(
4
dρ

'1
+ cρ

)
I (ρ)

]
‖f ‖BV.
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Finally, with (34), the operatorH2s acts on BV(I).
The derivative of the operatorH2s (with respect to s) equals G2s with

G2s[f ](x) =
∑

h∈H

∣∣h′(x)
∣∣s log
∣∣h′(x)
∣∣f ◦ h(x)1Jh(x).

In the same vein as previously, we now use the fact that
(∣∣h′ρ ∣∣ log

∣∣h′∣∣)′ !
∣∣h′ρ∣∣ |h

′′|
|h′| + |s|

∣∣h′′∣∣∣∣h′∣∣ρ−1∣∣log
∣∣h′∣∣∣∣

! c
(
|ρ| +
∣∣log
∣∣h′∣∣∣∣)∣∣h′∣∣ρ,

and thus deal with the integral

J (ρ) =
∫

I

∣∣uβ(ρ−1)∣∣ log |u|du,

that is convergent for 1(s) " 1 − (1/β). Then, in this domain, the mapping
s →H2s is analytic. "

5.3. Sufficient conditions for quasi-compactness

Here, we cannot expect that the transfer operator be compact on BV(I).
However, there exists a nice class of operators that will replace compact operators
for our purpose, namely the quasi-compact operators. The compact operators are
useful because their spectrum consists of isolated eigenvalues of finite multiplicity
(which can only accumulate at 0). For any operator L, the spectral radius R(L)
is the supremum of moduli |λ| when λ is an element of Sp(L), and the essential
spectral radius Re(L) is the smallest positive number r such that any eigenvalue λ
of Sp(L) with modulus |λ| > r is an isolated eigenvalue of finite multiplicity.
For compact operators, the essential radius equals 0. An operator L is quasi-
compact if the strict inequality Re(L) < R(L) holds. Then, except for the part of
the spectrum inside the closed disk of radius Re(L), the operator behaves just like
a compact operator (in the sense that its spectrum consists of isolated eigenvalues
of finite multiplicity).
The following theorem, due to Hennion [12] is a generalisation of previous

theorems due to Ionescu-Tulcea and Marinescu, and Lasota–Yorke. It gives suffi-
cient conditions that entail quasi-compactness. When using important properties
of the space BV(I) with respect to space L1 , namely, the fact that the unit ball of
BV(I) is precompact in L1, we can adapt this theorem to our context and obtain
the following statement.

Theorem (Hennion, Ionescu-Tulcea and Marinescu, Lasota–Yorke). Let L be
a bounded operator on L1. Assume that there exist two sequences {rn} and {tn} of
positive numbers such that, for all n " 1, one has
∥∥Ln[f ]

∥∥
BV ! rn‖f ‖BV + tn‖f ‖1. (35)
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Then, the operator L is bounded on BV(I) and its essential spectral radius
satisfies

Re(L) ! r := lim inf
n→∞ (rn)

1/n.

If, moreover, the spectral radius R(L) satisfies R(L) > r , then the operator L is
quasi-compact.

5.4. Essential radius of the transfer operator relative to a nice dynamical system

Here, we prove that the density transformer H = H2 relative to a nice
dynamical system satisfies inequality (35) of Hennion’s theorem. Then, we get
an upper bound for the essential radius.

Proposition 3. Let S be a dynamical system that satisfies (p1)–(p4). Then, the
density transformer H satisfies the inequality (35) of Hennion’s theorem:

∥∥Hn[f ]
∥∥
BV ! 2∆n‖f ‖BV +

(
2cn + 2

'n
+ 1
)
‖f ‖1,

with ∆n ! γ )n/n0*, cn ! cn0

1− γ . (36)

Then, the essential radius Re(H) of H on BV(I) satisfies Re(H) ! γ 1/n0 .

Proof. For proving this inequality, we follow the lines of Collet [6] and Lasota–
Mackey [16] that we adapt in the more general context of an infinite partition. We
need some variations of (iv) and (v) that relate the variation and the norm ‖.‖1:

(iv′)
b∨

a

|fg| ! sup
[a,b]

|g|
b∨

a

|f | +
b∫

a

∣∣f (x)g′(x)
∣∣dx;

(v′)
b∨

a

|f |1[c,d] ! 2
d∨

c

f + 2
d − c

d∫

c

∣∣f (x)
∣∣dx for [c, d] ⊂ [a, b].

One has
∥∥H[f ]

∥∥
1 !
∑

h∈H

∫

I

∣∣h′(x)f ◦ h(x)1Jh(x)
∣∣dx,

and, using the change of variables u := h(x), one obtains
∥∥H[f ]

∥∥
1 !
∑

h∈H

∫

Ih

∣∣f (u)
∣∣du = ‖f ‖1. (37)
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We compute the variation of Hn[f ] when f belongs to BV(I), n " 1. With (i),
one has,
∨

I
Hn[f ] =

∑

h∈Hn

∨

I

∣∣h′f ◦ h1Jh

∣∣.

When applying (v′) and (iv′) in each term of the sum, one obtains
∨

I
Hn[f ]!A+B +C with A=

∑

h∈Hn

Ah, B =
∑

h∈Hn

Bh, C =
∑

h∈Hn

Ch,

and

Ah = 2 sup
Jh

∣∣h′∣∣
∨

Jh

|f ◦ h|, Bh = 2
∫

Jh

∣∣h′′(x)
∣∣ ∣∣f ◦ h(x)

∣∣dx,

Ch = 2
|Jh|

∫

Jh

∣∣h′(x)
∣∣ ∣∣f ◦ h(x)

∣∣dx.

Now, with (iii), (ii), one gets

Ah ! 2∆n

∨

Ih

|f |; so that A ! 2∆n

∨

I
|f |. (38)

Notice that (p3) entails that |h′′| ! cn|h′|. Furthermore, from (p3),

Bh + Ch ! 2
(
cn + 1

'n

)∫

Jh

∣∣h′(x)
∣∣ ∣∣f ◦ h(x)

∣∣dx.

Now,when using the change of variablesu = h(x), summing over h and using (ii),
one obtains

B + C ! 2
(
cn + 1

'n

)
‖f ‖1. (39)

With (28), (37)–(39), the inequality (36) is proven. "

5.5. Spectral radius of the density transformer

We now focus on the density transformer H=H2 and we show the existence
of an invariant density of bounded variation.

Proposition 4. A dynamical system that satisfies (p1)–(p4) admits an invariant
density of bounded variation. The spectral radiusR(H) of the density transformer
on BV(I) equals 1.

Proof. With (p1), (p2), and (28), the sequence∆n tends to 0. For any fixed δ < 1,
there exists an integer n1 for which 2∆n1 ! δ. Then, the norm of Hn1[f ] satisfies
∥∥Hn1[f ]

∥∥
BV ! δ‖f ‖BV + L‖f ‖1,
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for some finite L, so that, for any n " 1, with (37), the norm of Hnn1[f ] satisfies
∥∥Hnn1[f ]

∥∥
BV ! δn‖f ‖BV + L

1− δ ‖f ‖1.

Finally, the set {Hnn1[1I]: n " 0} is a bounded set of BV(I). The same applies
to the set

F :=
{

fn = 1
n

n−1∑

j=0
Hjn1[1I]: n " 1

}

.

By Helly’s theorem, there exists a subsequence of F that converges in L1 to a
function f ∗ of BV(I). Since each element of F is a density, the limit f ∗ is a
density too. Moreover, it is clear that f ∗ satisfies Hn1[f ∗] = f ∗, so that f ∗ is an
invariant density for Hn1 that belongs to BV(I). Now, the density

g∗ := 1
n1

n1−1∑

j=0
Hj [f ∗]

is an invariant density for H that belongs to BV(I).
Since H is a density transformer, its spectral radius on L1 equals 1, and thus,

the spectral radius R(H) of H on BV(I) satisfies R(H) ! 1. The previous result
entails that R(H) " 1, and thus finally the spectral radius ofH on BV(I) satisfies
R(H) = 1. "

5.6. Unicity of the dominant eigenvalue

Since the essential radius and the spectral radius of the density transformer H
satisfy Re(H) ! γ 1/n0 < R(H) = 1, the density transformer H is quasi-compact
when acting on BV(I). We shall prove now that the eigenvalue λ= 1 is a unique
dominant eigenvalue by using property (p5) and a classical result that can be
found, for instance, in [2].

Property. Consider a dynamical system for which the density transformer H
is quasi-compact, and has an invariant density on BV(I). If, moreover, the
dynamical system is topologically mixing, then the eigenvalue λ = 1 is simple,
and there exists no other eigenvalue of modulus 1. The eigenvalue λ = 1 is said
to be the unique dominant eigenvalue.

5.7. Behaviour of the operatorH2s in a neighbourhood of s = 1

Both facts—quasi-compactness of the operator H, together with the unicity
of the dominant eigenvalue—entail the existence of a spectral gap between the
dominant eigenvalue λ = 1 and the remainder of the spectrum. Thanks to the
analyticity of the operator H2s at s = 1 (Proposition 2), perturbation theory [15]
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applies to this case, and the existence of this spectral gap remains true in a
neighbourhood of s = 1.
The dominant eigenvalue is thus isolated and defines in the neighbourhood of

s = 1 an analytic function s → λ(2s). The operator can be split into two parts: the
part relative to the dominant eigensubspace, and the part relative to the remainder
of the spectrum. Then, the following decomposition holds (near s = 1), for any
f ∈ BV(I):

H2s[f ](z) = λ(2s)P2s[f ](z) +Ns [f ](z),
where λ(2s) is the dominant eigenvalue, P2s is the projection on the dominant
eigensubspace and N2s is the operator relative to the remainder of the spectrum.
The projector P2s is of the form P2s[f ](z) = ψ2s(z)E2s[f ], where ψ2s is the
dominant eigenfunction normalized by E2s[ψ2s] = 1. The decomposition is also
valid for the iterates:

Hk
2s[f ](z) = λk(2s)P2s[f ](z) +Nk

2s[f ](z), (40)
and leads to a decomposition for the quasi-inverse

(I −H2s)−1[f ](x) = λ(2s)
1− λ(2s)P2s[f ](x) + (I −N2s)−1[f ](x), (41)

valid in a neighbourhood of s = 1. There, the spectral radius R(N2s) is strictly
less than δ < 1, so that the operator (I −N2s)−1 is analytic.
At s = 1 the operator H2s is a density transformer, so that λ(2) = 1 and the

eigenvector ψ2 is just the unique invariant density ψ . The projector E2 satisfies

E2[f ] =
∫

I

f (x)dx.

Moreover, the dominant eigenvalue λ(2s) is strictly decreasing along the real axis
(always near s = 1): From (40), one has, for a real s near 1

λ(2s) = lim
k→∞
[
Hk
2s[1](0)

]1/k
.

On the other hand,
Hk
2s[1](0) ! sup

h∈Hk

δ
(s−1)
h Hk[1](0) ! γ k(s−1)Hk[1](0).

Then, the following inequality holds (for s > 1):
λ(2s) ! γ (s−1)/n0λ(2),

and entails that the derivative−2λ′(2) is strictly positive. This quantity coincides
with the entropy h(S) of the dynamical system. Finally, the first term of (41)
defines a meromorphic operator with a simple pôle at s = 1. The residue involves
the spectral objects at s = 1, under the form

(I −H2s)−1[f ](x) 2 1
(s − 1)

1
h(α)

ψ(x)

∫

I

f (x)dx. (42)
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5.8. Spectral properties of H2s on the line 1(s) = 1

We prove now that the operator (I −H2s)−1 is analytic on the line 1(s) = 1,
s &= 1.

Proposition 5. For1(s) = 1, s &= 1, all the eigenvalues of the Ruelle operatorH2s
relative to dynamical system Sα have a modulus strictly less than 1.

Proof. Let λ be an eigenvalue ofH2+2it and let f denote an eigenfunction relative
to λ. Let f0 denote an eigenfunction of H2 relative to 1. As it is proven in [2] or
in [4], such a function can be chosen as a lower semi-continuous function so that
f0(x) " a > 0 for some a and all x ∈ I . Moreover, the function f (x)/f0(x) can
be supposed to be of modulus at most 1 on I and attain modulus 1 at point x0.
One always has

∣∣λf (x0)
∣∣ =
∣∣H2+2it[f ](x0)

∣∣=
∣∣∣∣
∑

h∈H
h′(x0)1+itf ◦ h(x0)

∣∣∣∣1Jh(x0) (43)

!
∑

h∈H

∣∣h′(x0)
∣∣ ∣∣f ◦ h(x0)

∣∣1Jh(x0)

!
∑

h∈H

∣∣h′(x0)
∣∣f0 ◦ h(x0)1Jh(x0) = f0(x0), (44)

and the definition of x0 proves the inequality |λ| ! 1. Suppose now that the
equality |λ| = 1 holds. Then the sequence of previous inequalities (43) becomes
a sequence of equalities. For any h ∈H for which x0 belongs to Jh, the equality
∣∣f ◦ h(x0)

∣∣= f0 ◦ h(x0) (45)

holds. On the other hand, the sequence ah := |h′(x0)|f ◦ h(x0)1Jh(x0) satisfies
the equality |∑ah| = ∑ |ah|. Then, there exists θ (of modulus 1) such that
ah = θ |ah| for any h, and the relation, valid for all h for which x0 belongs to
Jh

f ◦ h(x0)
∣∣h′(x0)

∣∣it = θ
∣∣f ◦ h(x0)

∣∣ (46)

holds. For any x0 ∈ I , the set {h(x0): h ∈ H} contains the sequence {1/(m +
x0): m " m0}. This sequence has 0 as limit, so that equality (45) proves
that limx→0 |f (x)| = limx→0 f0(x) &= 0. Now, the relation (46) shows that the
sequence
(

1
m + x0

)it

has a limit equal to θ when m →∞, which can be only true for t = 0. "
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5.9. Conclusion: properties of the quasi inverse (I −Hs)
−1

From Propositions 1–5, Sections 5.6 and 5.7, we deduce the main results of
this section:

Theorem 2. For any parameter α∈ ]0,1], the Ruelle operator Hs : BV(I) →
BV(I) associated to the dynamical system Sα is analytic on the right half-plane
{s: 1(s) > 1}. The quasi-inverse (I −Hs)

−1 is analytic on the punctured half-
plane {1(s) " 2: s &= 2}. Moreover, near s = 2, one has:

(I −Hs )
−1[f ](x)2 2

(s − 2)
1

h(α)
ψ [α](x)

∫

Iα

f (x)dx. (47)

Here, h(α) denotes the entropy of Sα , and ψ [α] is the invariant density.

In the following section, we shall come back to Dirichlet series F(s) and
GX(s) that are involved in the analysis of Euclidean algorithms, and prove that
Tauberian theorem applies to these functions.

6. Average-case analysis of the Eα algorithms

Now, we conclude the analysis of the Eα algorithms, and we state our main
results. We begin with the case α &= 0.

6.1. The first main result (case when α &= 0)

We know from Theorem 2 of Section 5 that the Tauberian theorem applies to
the quasi-inverse (I −H2s)−1 and thus to the functions F(s) and GX(s) defined
in (20) and (21). We now make precise the computations of the constants that are
involved.
Consider first the parameterX = p that denotes the number of iterations of the

algorithm. The Dirichlet series Gp(s) has a double pole at s = 2, and near s = 2:

F(s) ∼ 2
h(α)

ψ [α](0)
(s − 2) , Gp(s) ∼

(
2

h(α)

)2 ψ [α](0)
(s − 2)2 .

Then, Tauberian theorem implies the first result. In the same vein, the Dirichlet
series GC(s) has a pole of order 3 at s = 2 and satisfies near s = 2:

GC(s) ∼ ψ [α](0)
(s − 2)3

(
2

h(α)

)3( ∫

Iα

H[c][ψ](t)dt
)( ∫

Iα

.H[ψ](t)dt
)

.
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The first integral is related to the mean value of cost c, defined in (16), via the
relation
∫

Iα

H[c][ψ](t)dt =
∑

h∈H
c(h)

∫

Ih

ψ(t)dt = Eα[c].

The second one involves .H :=.H2s |s=1 and is expressed in terms of entropy
via the relation

h(α) = 2 log2
∫

Iα

.H[ψ](t)dt .

With these relations and the Tauberian theorem, we compute the constants
involved, and we then obtain our main result.

Theorem 3. Consider any parameter α∈ ]0,1]. The average number of iterations
of the α-Euclidean algorithm on the set of valid inputs of denominator less than
N is asymptotically of log order

P̃N (α) ∼ PN(α) ∼ 2
h(α)

logN,

and involves the entropy h(α) of the dynamical system Sα . The average bit
complexity of the α-Euclidean algorithm on the set of valid inputs of denominator
less than N is asymptotically of log-squared order

C̃N (α) ∼ CN(α) ∼ γ (α) log22N

where the constant

γ (α) = log2
h(α)

Eα[c]

involves the entropy h(α) together with the mean value Eα[c] of digit-cost c when
the interval Iα is endowed with the invariant measure ψ [α]. More precisely, the
cost c(m) relative to m = [q, ε] equals '(q) + 2 + (1 − ε)/2 where '(q) is the
number of bits of digit q , and ε = ±1 the sign used.

The mean value Eα[c] of digit-cost c can be easily obtained from the
expression of cost c given in (9) together with Eα['] and Prα[ε = −1] which
are studied in Section 3:

Eα[c] = Eα['] + 2+ Eα
[
1− ε
2

]
= Eα['] + 2+ Prα[ε = −1].

In the center range and the right range, the invariant densityψ [α] is explicit, so the
entropy h(α) and the probability Prα[ε = −1] are explicit too and given by (15)
and (18). We also provide in (17) a formula for the mean value Eα['] when α
belongs to familyM that gives rise to some particular Markovian systems.
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6.2. The particular case α = 0: The induced system

The Euclidean algorithm relative to the case α = 0 is related to the by-excess
division. It is quite particular and the number of steps has already been studied by
Vallée [24]. We extend her method for studying the average-bit complexity.
The main difference comes from the Euclidean division itself, that we ex-

hibit in Section 2.3. Now, with by-excess division, any rational can be written
as (u/v) = h(1), and the stopping point is x = 1. This point x = 1 is also an indif-
ferent point, i.e., a fixed point T (x) = x where the derivative equals 1 (in absolute
value). The inverse branch a that contains this point is relative to digit 2, and is
defined as

a(x) = 1
2− x

.

Thus, the dynamical system S0 does not satisfy any more the expansion prop-
erty (p1), and no iterate of T satisfies (p1). On the other hand, it is easy to check
that functionψ(x) = 1/(1−x) is an invariant function for the density transformer
that does not belong to L1.
Since the dynamical system S0 does not fullfil the crucial strong expansion

property, we deal with the “induced” dynamical system, introduced by Bowen
in [3] that we adapt in our context. Since 1 is a fixed point, any rational (u/v)

can be written as h(1), where the LFT h does not finish with branch a. Then, the
Euclidean algorithm relative to by-excess division uses only the LFTs that belong
to the set

H̃ := (a∗B)∗ with B =H \ {a}.
The induced dynamical system S̃0 is defined as the dynamical system whose set
of inverse branches is the set H̃ := (a∗B)∗. This dynamical system is complete.
The transfer operator H̃s relative to the induced dynamical system is called the

“induced” transfer operator. It involves the transfer operators As and Bs relative
to sets {a} and B:

As[f ](x) =
(

1
2− x

)s

f

(
1

2− x

)
,

Bs [f ](x) =
∑

m!3

(
1

m − x

)s

f

(
1

m − x

)
,

and is defined as

H̃s :=
∑

k!0
BsAk

s = Bs(I −As)
−1 with Hs =As +Bs .

Now, this is the quasi-inverse (I − H̃s)
−1 that plays a fundamental rôle since

we shall show that Dirichlet series F(s),GX(s) admit alternative expressions
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where this quasi-inverse intervenes. Since the dynamical system is complete, with
analytic branches, it is more convenient to work in a functional space formed with
analytic functions. We use then one of the main results of [24].

Theorem (Vallée). Consider a complete dynamical system (I, T̃ ) whose set H̃
of inverse branches satisfies the following two conditions:

(C1) The set H̃ is a set of LFTs with integer coefficients which contains, for some
integer A > 0 a subset

D :=
{
h: h(x) = A/(c + x) with integers c →∞

}
.

(C2) There exist an open disk V that contains I , and a real β < 2 such that
(i) every LFT h ∈ H̃ has an analytic continuation on V that maps the

closure V̄ of disk V inside V;
(ii) every function |h′| has an analytic continuation on V that satisfies

supV |h′(z)| = δh < 1;
(iii) the series

∑
h∈H̃ δh

s/2 converges on the plane 1(s) > β .

Then the quasi-inverse (I − H̃s)
−1 of the Ruelle operator H̃s relative to this

dynamical system is analytic on the punctured plane {1(s) = 2: s &= 2} and has
a pole of order 1 at s = 2. Near s = 2, one has, for any function f positive on
V ∩R, and any x ∈ V ∩R,

(
I − H̃s

)−1[f ](x) ∼ 1
(s − 2)

2
h̃(H)

ψ̃(x)

1∫

0

f (x)dx, (48)

where h̃(H) is the entropy of the dynamical system and ψ̃ is the invariant density
of the Perron–Frobenius operator H̃ := H̃2.

We now apply this theorem to the induced dynamical system relative to the
By-Excess Euclidean Algorithm. Each h of H̃ can be written as h = akb for some
k " 0 and b ∈ B, so that

h(x) = k(m− x)− (k − 1)
(k + 1)(m − x)− k

with m " 3, k " 0.

One can choose as disk V the disk of center 1/2 with radius 1, so that condition (ii)
is satisfied, since
∣∣h′(x)
∣∣= 1

[(k + 1)(m − x)− k]2 ! 4
(k + 3)2 ! 4

9
.

Condition (iii) is also satisfied with β = 1 since

δh ! 1
(k + 1)2

1
(
m − 5

2
)2 ;
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so that
∣∣∣∣
∑

h∈H̃
δh

s/2
∣∣∣∣! 2σ ζ(σ )2, for σ = 1(s).

Moreover,when s = 2, the function φ = B2[ψ] = (H2−A2)[ψ] = (I −A2)[ψ] =
1/(2 − x) is an invariant density for H̃2, so that ψ̃(x) equals 1/(2 − x). The
entropy h̃ is well-defined, and

h̃ = π2

3 log2
.

6.3. The second main result (case when α = 0)

We shall now prove our second main result.

Theorem 4. The average number of iterations of the Euclidean algorithm relative
to the by-excess division on the set of valid inputs of denominator less than N is
asymptotically of log-squared order

P̃N (0) ∼ PN(0) ∼ 6
π2
log2N.

The average bit-complexity of the Euclidean algorithm relative to the by-excess
division on the set of valid inputs of denominator less thanN is asymptotically of
log-cubed order

C̃N (0) ∼ CN(0) ∼ 9 log3 2
π2

log32N.

Proof. We first show that Dirichlet series F(s), GX(s) admit alternative
expressions where the quasi-inverse (I − H̃s)

−1 intervenes. First, since each
rational can be written as u/v = h1 ◦ h2 ◦ · · · ◦ hn(1) with hi ∈ H̃, the equality

F(s) =
(
I − H̃s

)−1[1](1)
holds. For studying the number p of iterations, we introduce another transfer
operator where the variableW marks the number of iterations, as

H̃s,w =
∑

k!0
wk+1BsAk

s ; so that Gp(s) = d
dw
(
I − H̃s,w

)−1∣∣
w=1[1](1).

Then, when using the equality

d
dw
H̃s,w

∣∣∣∣
w=1

= Bs (I −As)
−2 = H̃s(I −As)

−1,

one obtains an alternative expression forGp(s):

Gp(s) =
(
I − H̃s

)−1 ◦ H̃s ◦ (I −As)
−1 ◦
(
I − H̃s

)−1[1](1).
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Each occurrence of the quasi-inverse brings a pole of order 1 at s = 2. On the
other hand, since

1∫

0

(I −As)
−1
[

1
2− x

]
dx ∼ ζ(s − 1) (s → 2),

the central term (I − As)
−1 creates another pole (of order 1) at s = 2. Then, the

Dirichlet series Gp(s) has a pole of order 3 at s = 2, and the number of iterations
is of log-squared order.
We remark that the average number of good steps is of logarithmic order. For

studying this parameter g, the convenient transfer operator is

w
∑

k!0
BsAk

s = wH̃s

so that the Dirichlet series

Gg(s) = d
dw
(
I − wH̃s

)−1
∣∣∣∣
w=1

[1](1) = (I − H̃s

)−2 ◦ H̃s[1](1)

has a pole of order 2 at s = 2.
Then, the dominant bit-complexity cost is provided by “bad” steps. Each bad

step has a cost equal to 3 log2(vi) since it consists in a subtraction and one
exchange. Then the Dirichlet seriesGC(s) has its main term that satisfies

GC(s) = 3.
(
I − H̃s

)−1 ◦ (I −As)
−1 ◦ (I − H̃s

)−1[1](1)
= 3
(
I − H̃s

)−1 ◦.H̃s ◦
(
I − H̃s

)−1 ◦ (I −As)
−1 ◦
(
I − H̃s

)−1[1](1).
As previously, each occurrence of the quasi-inverse (I − H̃s)

−1 brings a pole of
order 1 at s = 2, whereas the central term (I − As)

−1 creates another pole (of
order 1) at s = 2. Then, the Dirichlet series GC(s) has a pole of order 4 at s = 2.
In both cases, the constants involve the entropy h̃, and the residue at s = 2 of

ζ(s − 1). "

6.4. The phase transition between cases α = 0 and α > 0

We mainly consider the average number of iterations of the Eα algorithms.
There are three main ranges for strictly positive values of parameter α: the left
range ]0,

√
2−1[, the central range [

√
2−1,φ−1] and the right range ]φ−1,1].

In each of these three ranges, the average number of iterations is of logarithmic
order and involves the entropy h(α). In the central range, the entropy h(α) does
not depend on parameter α. In the right range where α belongs to [φ − 1,1],
the mapping α → h(α) defines an decreasing function of parameter α, that is
continuous with respect to α. The behaviour of this mapping α→ h(α) is not
known in the left range where α belongs to ]0,

√
2−1[. It can be proved (by using
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arguments of perturbation of dynamical systems) that this mapping α→ h(α) is
continuous in this left range. It is quite natural to conjecture that this mapping
defines a increasing function of parameter α.
Moreover, at α = 0, there is an essential change in the behaviour of the

α-Euclidean algorithms that corresponds to a phase transition for associated
dynamical systems. It is then natural to conjecture that

lim
α→0+

h(α) = 0.
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